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Abstract

We propose a high-level concept word detector that can

be integrated with any video-to-language models. It takes

a video as input and generates a list of concept words as

useful semantic priors for language generation models. The

proposed word detector has two important properties. First,

it does not require any external knowledge sources for train-

ing. Second, the proposed word detector is trainable in

an end-to-end manner jointly with any video-to-language

models. To effectively exploit the detected words, we also

develop a semantic attention mechanism that selectively fo-

cuses on the detected concept words and fuse them with the

word encoding and decoding in the language model. In or-

der to demonstrate that the proposed approach indeed im-

proves the performance of multiple video-to-language tasks,

we participate in all the four tasks of LSMDC 2016 [18].

Our approach has won three of them, including fill-in-the-

blank, multiple-choice test, and movie retrieval.

1. Introduction

Video-to-language tasks, including video captioning [6,

8, 17, 27, 32, 35] and video question answering (QA) [23],

are recent emerging challenges in computer vision research.

This set of problems is interesting as one of frontiers in ar-

tificial intelligence; beyond that, it can also potentiate mul-

tiple practical applications, such as retrieving video content

by users’ free-form queries or helping visually impaired

people understand the visual content. Recently, a number

of large-scale datasets have been introduced as a common

ground for researchers to promote the progress of video-to-

language research (e.g. [4, 16, 18, 23]).

The objective of this work is to propose a concept word

detector, as shown in Fig.1, which takes a training set of

videos and associated sentences as input, and generates a

list of high-level concept words per video as useful seman-

tic priors for a variety of video-to-language tasks, includ-

ing video captioning, retrieval, and question answering. We
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Figure 1. The intuition of the proposed concept word detector.

Given a video clip, a set of tracing LSTMs extract multiple concept

words that consistently appear across frame regions. We then em-

ploy semantic attention to combine the detected concepts with text

encoding/decoding for several video-to-language tasks of LSMDC

2016, such as captioning, retrieval, and question answering.

design our word detector to have the following two charac-

teristics, to be easily integrated with any video-to-language

models. First, it does not require any external knowledge

sources for training. Instead, our detector learns the cor-

relation between words in the captions and video regions

from the whole training data. To this end, we use a contin-

uous soft attention mechanism that traces consistent visual

information across frames and associates them with concept

words from captions. Second, the word detector is trainable

in an end-to-end manner jointly with any video-to-language

models. The loss function for learning the word detector

can be plugged as an auxiliary term into the model’s overall

cost function; as a result, we can reduce efforts to separately
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collect training examples and learn both models.

We also develop language model components to to ef-

fectively exploit the detected words. Inspired by semantic

attention in image captioning research [34], we develop an

attention mechanism that selectively focuses on the detected

concept words and fuse them with word encoding and de-

coding in the language model. That is, the detected concept

words are combined with input words to better represent the

hidden states of encoders, and with output words to gener-

ate more accurate word prediction.

In order to demonstrate that the proposed word detector

and attention mechanism indeed improve the performance

of multiple video-to-language tasks, we participate in four

tasks of LSMDC 2016 (Large Scale Movie Description

Challenge) [18], which is one of the most active and suc-

cessful benchmarks that advance the progress of video-to-

language research. The challenges include movie descrip-

tion and multiple-choice test as video captioning, fill-in-the-

blank as video question answering, and movie retrieval as

video retrieval. Following the public evaluation protocol of

LSMDC 2016, our approach achieves the best accuracies

in the three tasks (fill-in-the-blank, multiple-choice test, and

movie retrieval), and comparable performance in the other

task (movie description).

1.1. Related Work

Our work can be uniquely positioned in the context of

two recent research directions in image/video captioning.

Image/Video Captioning with Word Detection. Image

and video captioning has been actively studied in recent vi-

sion and language research, including [5, 6, 8, 17, 19, 27,

28], to name a few. Among them, there have been several

attempts to detect a set of concept words or attributes from

visual input to boost up the captioning performance. In im-

age captioning research, Fang et al. [7] exploit a multiple in-

stance learning (MIL) approach to train visual detectors that

identify a set of words with bounding boxed regions of the

image. Based on the detected words, they retrieve and re-

rank the best caption sentence for the image. Wu et al. [29]

use a CNN to learn a mapping between an image and se-

mantic attributes. They then exploit the mapping as an input

to the captioning decoder. They also extend the framework

to explicitly leverage external knowledge base such as DB-

pedia for question answering tasks. Venugopalan et al. [26]

generate description with novel words beyond the ones in

the training set, by leveraging external sources, including

object recognition datasets like ImageNet and external text

corpus like Wikipedia. You et al. [34] also exploit weak

labels and tags on Internet images to train additional para-

metric visual classifiers for image captioning.

In the video domain, it is more ambiguous to learn the re-

lation between descriptive words and visual patterns. There

have been only few work in video captioning. Rohrbach

et al. [17] propose a two-step approach for video caption-

ing on the LSMDC dataset. They first extract verbs, ob-

jects, and places from movie description, and separately

train SVM-based classifiers for each group. They then learn

the LSTM decoder that generates text description based on

the responses of these visual classifiers.

While almost all previous captioning methods exploit ex-

ternal classifiers for concept or attribute detection, the nov-

elty of our work lies in that we use only captioning training

data with no external sources to learn the word detector,

and propose an end-to-end design for learning both word

detection and caption generation simultaneously. More-

over, compared to video captioning work of [17] where

only movie description of LSMDC is addressed, this work

is more comprehensive in that we validate the usefulness of

our method for all the four tasks of LSMDC.

Attention for Captioning. Attention mechanism has

been successfully applied to caption generation. One of the

earliest works is [31] that dynamically focuses on different

image regions to produce an output word sequence. Later

this soft attention has been extended as temporal attention

over video frames [33, 35] for video captioning.

Beyond the attention on spatial or temporal structure of

visual input, recently You et al. [34] propose an attention on

attribute words for image captioning. That is, the method

enumerates a set of important object labels in the image,

and then dynamically switch attention among these con-

cept labels. Although our approach also exploits the idea

of semantic attention, it bears two key differences. First,

we extend the semantic attention to video domains for the

first time, not only for video captioning but also for retrieval

and question answering tasks. Second, the approach of [34]

relies on the classifiers that are separately learned from ex-

ternal datasets, whereas our approach is learnable end-to-

end with only training data of captioning. It significantly

reduces efforts to prepare for additional multi-label classi-

fiers.

1.2. Contributions

We summarize the contributions of this work as follows.

(1) We propose a novel end-to-end learning approach

for detecting a list of concept words and attend on them

to enhance the performance of multiple video-to-language

tasks. The proposed concept word detection and attention

model can be plugged into any models of video captioning,

retrieval, and question answering. Our technical novelties

can be seen from two recent trends of image/video caption-

ing research. First, our work is a first end-to-end trainable

model not only for concept word detection but also for lan-

guage generation. Second, our work is a first semantic at-

tention model for video-to-language tasks.

(2) To validate the applicability of the proposed ap-

proach, we participate in all the four tasks of LSMDC 2016.
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Our models have won three of them, including fill-in-the-

blank, multiple-choice test, and movie retrieval. We also

attain comparable performance for movie description.

2. Detection of Concept Words from Videos

We first explain the pre-processing steps for representa-

tion of words and video frames. Then, we explain how we

detect concept words for a given video.

2.1. Preprocessing

Dictionary and Word Embedding. We define a vo-

cabulary dictionary V by collecting the words that occur

more than three times in the dataset. The dictionary size

is |V| = 12 486, from which our models sequentially select

words as output. We train the word2vec skip-gram embed-

ding [14] to obtain the word embedding matrix E ∈ R
d×|V|

where d is the word embedding dimension and V is the dic-

tionary size. We set d = 300 in our implementation.

Video Representation. We first equidistantly sample

one per ten frames from a video, to reduce the frame re-

dundancy while minimizing loss of information. We denote

the number of video frames by N . We limit the maximum

number of frames to be Nmax = 40; if a video is too long,

we use a wider interval for uniform sampling.

We employ a convolutional neural network (CNN) to en-

code video input. Specifically, we extract the feature map of

each frame from the res5c layer (i.e. R7×7×2,048) of ResNet

[9] pretrained on ImageNet dataset [20], and then apply a

2 × 2 max-pooling followed by a 3 × 3 convolution to re-

duce dimension to R
4×4×500. Reducing the number of spa-

tial grid regions to 4 × 4 helps the concept word detector

get trained much faster, while not hurting detection perfor-

mance significantly. We denote resulting visual features of

frames by {vn}
N
n=1. Throughout this paper, we use n for

denoting video frame index.

2.2. An Attention Model for Concept Detection

Concept Words and Traces. We propose the concept

word detector using LSTM networks with soft attention

mechanism. Its structure is shown in the red box of Fig.2.

Its goal is, for a given video, to discover a list of concept

words that consistently appear across frame regions. The

detected concept words are used as additional references for

video captioning models (section 3.1), which generates out-

put sentence by selectively attending on those words.

We first define a set of candidate words with a size of

V from all training captions. Among them, we discover K

concept words per video. We set V = 2, 000 and K = 10.

We first apply the automatic POS tagging of NLTK [3], to

extract nouns, verbs and adjectives from all training cap-

tion sentences [7]. We then compute the frequencies of

those words in a training set, and select the V most com-

mon words as concept word candidates.

Since we do not have groundtruth bounding boxes for

concept words in the videos, we cannot train individual con-

cept detectors in a standard supervised setting. Our idea is

to adopt a soft attention mechanism to infer words by track-

ing regions that are spatially consistent. To this end, we em-

ploy a set of tracing LSTMs, each of which takes care of a

single spatially-consistent meaning being tracked over time,

what we call trace. That is, we keep track of spatial atten-

tion over video frames using an LSTM, so that spatial atten-

tions in adjacent frames resemble the spatial consistency of

a single concept (e.g. a moving object, or an action in video

clips; see Fig.1). We use a total of L tracing LSTMs to cap-

ture out L traces (or concepts), where L is the number of

spatial regions in the visual feature (i.e. L = 4× 4 = 16 for

v ∈ R
4×4×D). Fusing these L concepts together, we finally

discover K concept words, as will be described next.

Computation of Spatial Attention. For each trace l,

we maintain spatial attention weights α
(l)
n ∈ R

4×4, indi-

cating where to attend on (4 × 4) spatial grid locations of

vn, through video frames n = 1 . . . N . The initial attention

weight α
(l)
0 at n = 0 is initialized with an one-hot matrix,

for each of L grid locations. We compute the hidden states

h
(l)
n ∈ R

500 of the LSTM through n = 1 . . . N by:

c(l)n = α
(l)
n ⊗ vn (1)

h(l)
n = LSTM(c(l)n ,h

(l)
n−1). (2)

where A⊗B =
�

j,k A(j,k) ·B(j,k,:). The input to LSTMs

is the context vector c
(l)
n ∈ R

500, which is obtained by ap-

plying spatial attention α
(l)
n to the visual feature vn. Note

that the parameters of L LSTMs are shared.

The attention weight vector α
(l)
n ∈ R

4×4 at time step n

is updated as follows:

e(l)n (j, k) = vn(j, k)� h
(l)
n−1, (3)

α
(l)
n = softmax

�

Conv(e(l)n )
�

, (4)

where � is elementwise product, and Conv(·) denotes two

convolution operations before the softmax layer in Fig.2.

Note that α
(l)
n in Eq.(3) is computed from the previous hid-

den state h
(l)
n−1 of the LSTM.

The spatial attention α
(l)
n measures how each spatial grid

location of visual features is related to the concept being

tracked through tracing LSTMs. By repeating these two

steps of Eq.(1)–(3) from n = 1 to N , our model can contin-

uously find important and temporally consistent meanings

over time, that are closely related to a part of video, rather

than focusing on each video frame individually.

Finally, we predict the concept confidence vector p:

p = σ
�

Wp

�

h
(1)
N ; · · · ;h

(L)
N

�

+ bp

�

∈ R
V , (5)
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Figure 2. The architecture of the concept word detection in a top red box (section 2.2), and our video description model in bottom, which

uses semantic attention on the detected concept words (section 3.1).

that is, we first concatenate the hidden states {h
(l)
N }Ll=1 at

the last time step of all tracing LSTMs, apply a linear trans-

form parameterized by Wp ∈ R
V×(500L) and bp ∈ R

V ,

and apply the elementwise sigmoid activation σ.

Training and Inference. For training, we obtain a ref-

erence concept confidence vector p∗ ∈ R
V whose element

p∗i is 1 if the corresponding word exists in the groundtruth

caption; otherwise, 0. We minimize the following sigmoid

cross-entropy cost Lcon, which is often used for multi-label

classification [30] where each class is independent and not

mutually exclusive:

Lcon = −
1

V

V
�

i=1

[p∗i log(pi) + (1− p∗i ) log(1− pi)] . (6)

Strictly speaking, since we apply an end-to-end learning ap-

proach, the cost of Eq.(6) is used as an auxiliary term for the

overall cost function, which will be discussed in section 3.

For inference, we compute p for a given query video,

and find top K words from the score p (i.e. argmax1:K p).

Finally, we represent these K concept words by their word

embedding {ai}
K
i=1.

3. Video-to-Language Models

We design a different base model for each of LSMDC

tasks, while they share the concept word detector and the

semantic attention mechanism. That is, we aim to validate

that the proposed concept word detection is useful to a wide

range of video-to-language models. For base models, we

take advantage of state-of-the-art techniques, for which we

do not argue as our contribution. We refer to our video-to-

language models leveraging the concept word detector as

CT-SAN (Concept-Tracing Semantic Attention Network).

For better understanding of our models, we outline the

four LSMDC tasks as follows: (i) Movie description: gen-

erating a single descriptive sentence for a given movie clip,

(ii) Fill-in-the-blank: given a video and a sentence with a

single blank, finding a suitable word for the blank from

the whole vocabulary set, (iii) Multiple-choice test: given

a video query and five descriptive sentences, choosing the

correct one out of them, and (iv) Movie retrieval: ranking

1,000 movie clips for a given natural language query.

We defer more model details to the supplementary file.

Especially, we skip the description of multiple-choice and

movie retrieval models in Figure 3(b)–(c), which can be

found in the supplementary file.

3.1. A Model for Description

Fig.2 shows the proposed video captioning model. It

takes video features {vn}
N
n=1 and the detected concept

words {ai}
K
i=1 as input, and produces a word sequence as

output {yt}
T
t=1. The model comprises video encoding and

caption decoding LSTMs, and two semantic attention mod-

els. The two LSTM networks have two layers in depth, with

layer normalization [1] and dropout [22] with a rate of 0.2.

Video Encoder. The video encoding LSTM encodes a

video into a sequence of hidden states {sn}
N
n=1 ∈ R

D.

sn = LSTM(vn, sn−1) (7)
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where vn ∈ R
D is obtained by (4, 4)-average-pooling vn.

Caption Decoder. The caption decoding LSTM is a nor-

mal LSTM network as follows:

ht = LSTM(xt,ht−1), (8)

where the input xt is an intermediate representation of t-

th word input with semantic attention applied, as will be

described below. We initialize the hidden state at t = 0 by

the last hidden state of the video encoder: h0 = sN ∈ R
D.

Semantic Attention. Based on [34], our model in Fig.2

uses the semantic attention in two different parts, which are

called as input and output semantic attention, respectively.

The input semantic attention φ computes an attention

weight γt,i, which is assigned to each predicted concept

word ai. It helps the caption decoding LSTM focus on dif-

ferent concept words dynamically at each step t.

The attention weight γt,i ∈ R
K and input vector xt ∈

R
D to the LSTM are obtained by

γt,i ∝ exp((Eyt−1)
�
Wγai), (9)

xt = φ(yt−1, {ai})

= Wx(Eyt−1 + diag(wx,a)
�

i

γt,iai). (10)

We multiply a previous word yt−1 ∈ R
|V| by the word em-

bedding matrix E to be d-dimensional. The parameters to

learn include Wγ ∈ R
d×d, Wx ∈ R

D×d and wx,a ∈ R
d.

The output semantic attention ϕ guides how to dynam-

ically weight the concept words {ai} when generating an

output word yt at each step. We use ht, the hidden state

of decoding LSTM at t as an input to the output attention

function ϕ. We then compute pt ∈ R
D by attending the

concept words set {ai} with the weight βt,i:

βt,i ∝ exp(h�

t Wβσ(ai)), (11)

pt = ϕ(ht, {ai})

= ht + diag(wh,a)
�

i

βt,iWβσ(ai), (12)

where σ is the hyperbolic tangent, and parameters include

wh,a ∈ R
D and Wβ ∈ R

D×d.

Finally, the probability of output word is obtained as

p(yt | y1:t−1) = softmax(Wypt + by), (13)

where Wy ∈ R
|V|×D and by ∈ R

|V|. This procedure loops

until yt corresponds to the <EOS> token.

Training. To learn the parameters of the model, we de-

fine a loss function as the total negative log-likelihood of all

the words, with regularization terms on attention weights

{αt,i}, {βt,i}, and {γt,i} [34], as well as the loss Lcon for

concept discovery (Eq.6):

L = −
�

t

log p(yt) + λ1(g(β) + g(γ)) + λ2Lcon (14)

where λ1,λ2 are hyperparameters and g is a regularization

function with setting to p = 2, q = 0.5 as

g(α) = �α�1,p + �α��1,q (15)

=

�

�

i

�

�

t

αt,i

�p�1/p

+

�

�

t

�

�

i

αt,i

�q�1/q

.

For the rest of models, we transfer the parameters of the

concept word detector trained with the description model,

and allow the parameters being fine-tuned.

3.2. A Model for Fill-in-the-Blank

Fig.3(a) illustrates the proposed model for the fill-in-the-

blank task. It is based on a bidirectional LSTM network

(BLSTM) [21, 10], which is useful in predicting a blank

word from an imperfect sentence, since it considers the se-

quence in both forward and backward directions. Our key

idea is to employ the semantic attention mechanism on both

input and output of the BLSTM, to strengthen the meaning

of input and output words with the detected concept words.

The model takes word representation {ct}
T
t=1 and con-

cept words {ai}
K
i=1 as input. Each ct ∈ R

d is obtained by

multiplying the one-hot word vector by an embedding ma-

trix E. Suppose that the t-th text input is a blank for which

we use a special token <blank>. We add the word predic-

tion module only on top of the t-th step of the BLSTM.

BLSTM. The input video is represented by the video

encoding LSTM in Figure 2. The hidden state of the final

video frame sN is used to initialize the hidden states of the

BLSTM: hb
T+1 = h

f
0 = sN , where {hf

t }
T
t=1 and {hb

t}
T
t=1

are the forward and backward hidden states of the BLSTM,

respectively:

h
f
t = LSTM(xt,h

f
t−1), (16)

hb
t = LSTM(xt,h

b
t+1). (17)

We also use the layer normalization [1].

Semantic Attention. The input and output semantic

attention of this model is almost identical to those of the

captioning model in section 3.1, only except that the word

representation ct ∈ R
d is used as input at each time step,

instead of previous word vector yt−1. Then the attention

weighted word vector {xt}
T
t=1 is fed into the BLSTM.

The output semantic attention is also similar to that of

the captioning model in section 3.1, only except that we ap-

ply the attention only once at t-th step where the <blank>

token is taken as input. We feed the output of the BLSTM

ot = tanh(Wo[h
f
t ;h

b
t ] + bo), (18)

where Wo ∈ R
D×2D and bo ∈ R

D, into the output atten-

tion function ϕ, which generates p ∈ R
D as in Eq.(12) of

the description model, p = ϕ(ot, {ai}).
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Figure 3. The model architectures for (a) fill-in-the-blank (section 3.2), (b) multiple-choice, and (c) movie retrieval task. The description of

models for (b)–(c) can be found in the supplementary file. Each model takes advantage of the concept word detector in Fig.2, and semantic

attention for the sake of its objective.

Finally, the output word probability y given {ct}
T
t=1 is

obtained via softmax on p as

p(y | {ct}
T
t=1) = softmax(Wyp+ by), (19)

where parameters include Wy ∈ R
|V|×D and by ∈ R

|V|.

Training. During training, we minimize the loss L as

L = − log p(y) + λ1(g(β) + g(γ)) + λ2Lcon, (20)

where λ1,λ2 are hyperparameters, and g is the same regu-

larization function of Eq.(15). Again, Lcon is the cost of the

concept word detector in Eq.(6).

4. Experiments

We report the experimental results of the proposed mod-

els for the four tasks of LSMDC 2016. More experimental

results and implementation details can be found in the sup-

plementary file.

4.1. The LSMDC Dataset and Tasks

The LSMDC 2016 comprises four video-to-language

tasks on the LSMDC dataset, which contains a parallel cor-

pus of 118,114 sentences and 118,081 video clips sampled

from 202 movies. We strictly follow the evaluation proto-

cols of the challenge. We defer more details of the dataset

and challenge rules to [18] and the challenge homepage1.

Movie Description. This task is related to video cap-

tioning; given a short video clip, its goal is to generate a sin-

gle descriptive sentence. The challenge provides a subset of

LSMDC dataset named LSMDC16. It is divided into train-

ing, validation, public test, and blind test set, whose sizes

are 91,941, 6,542, 10,053, and 9,578, respectively. The of-

ficial performance metrics include BLEU-1,2,3,4 [15], ME-

TEOR [2], ROUGE-L [12] and CIDEr [25].

1https://sites.google.com/site/

describingmovies/.

Multiple-Choice Test. Given a video query and five

candidate captions, from which its goal is to find the best

option. The correct answer is the GT caption of the query

video, and four other distractors are randomly chosen from

the other captions that have different activity-phrase labels

from the correct answer. The evaluation metric is the per-

centage of correctly answered test questions out of 10,053

public-test data.

Movie Retrieval. The objective is, given a short query

sentence, to search for its corresponding video out of 1,000

candidate videos, sampled from the LSMDC16 public-test

data. The evaluation metrics include Recall@1/5/10, and

Median Rank (MedR). The Recall@k means the percentage

of the GT video included in the first k retrieved videos, and

the MedR indicates the median rank of the GT. Each algo-

rithm predicts 1, 000× 1, 000 pairwise rank scores between

phrases and videos, from which all the evaluation metrics

are calculated.

Movie Fill-in-the-Blank. This task is related to visual

question answering; given a video clip and a sentence with

a blank in it, its goal is to predict a single correct word to

fill in the blank. The test set includes 30,000 examples from

10,000 clips (i.e. about 3 examples per sentence). The eval-

uation metric is the prediction accuracy, which is the per-

centage of predicted words that match with GTs.

4.2. Quantitative Results

We compare with the results on the public dataset in the

official evaluation server of LSMDC 2016 as of the submis-

sion deadline (i.e. November 15th, 2016 UTC 23:59). Ex-

cept award winners, the LSMDC participants have no obli-

gation to disclose their identities or used technique. Below

we use the IDs in the leaderboard to denote participants.

Movie description. Table 1 compares the performance

of movie description between different algorithms. Among

comparable models, our approach ranks (5, 4, 1, 1)-th in the
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Movie Description B1 B2 B3 B4 M R Cr

EITanque [11] 0.144 (4) 0.042 (5) 0.016 (3) 0.007 (2) 0.056 (7) 0.130 (7) 0.098 (2)

S2VT [27] 0.162 (1) 0.051 (1) 0.017 (1) 0.007 (2) 0.070 (4) 0.149 (4) 0.082 (4)

SNUVL 0.157 (2) 0.049 (2) 0.014 (4) 0.004 (6) 0.071 (2) 0.147 (5) 0.070 (6)

sophieag 0.151 (3) 0.047 (3) 0.013 (5) 0.005 (4) 0.075 (1) 0.152 (2) 0.072 (5)

ayush11011995 0.116 (8) 0.032 (7) 0.011 (7) 0.004 (6) 0.070 (4) 0.138 (6) 0.042 (8)

rakshithShetty 0.119 (7) 0.024 (8) 0.007 (8) 0.003 (8) 0.046 (8) 0.108 (8) 0.044 (7)

Aalto 0.070 (9) 0.017 (9) 0.005 (9) 0.002 (9) 0.033 (9) 0.069 (9) 0.037 (9)

Base-SAN 0.123 (6) 0.038 (6) 0.013 (5) 0.005 (4) 0.066 (6) 0.150 (3) 0.090 (3)

CT-SAN 0.135 (5) 0.044 (4) 0.017 (1) 0.008 (1) 0.071 (2) 0.159 (1) 0.100 (1)

Fill-in-the-Blank Accuracy

Simple-LSTM 30.9

Simple-BLSTM 31.6

Base-SAN (Single) 34.5

Merging-LSTM [13] 34.2

Base-SAN (Ensemble) 36.9

SNUVL (Single) 38.0

SNUVL (Ensemble) 40.7

CT-SAN (Single) 41.9

CT-SAN (Ensemble) 42.7

Table 1. Left: Performance comparison for the movie description task on the LSMDC 2016 public test dataset. For language metrics, we

use BLEU (B), METEOR (M), ROUGE (R), and CIDEr (Cr). We also show the ranking in parentheses. Right: Accuracy comparison (in

percentage) for the movie fill-in-the-blank task.

Tasks Multiple-Choice Movie Retrieval

Methods Accuracy R@1 R@5 R@10 MedR

Aalto 39.7 – – – –

SA-G+SA-FC7 [24] 55.1 3.0 8.8 13.2 114

LSTM+SA-FC7 [24] 56.3 3.3 10.2 15.6 88

C+LSTM+SA-FC7 [24] 58.1 4.3 12.6 18.9 98

Base-SAN (Single) 60.1 4.3 13.0 18.2 83

Base-SAN (Ensemble) 64.0 4.4 13.9 19.3 74

SNUVL (Single) 63.1 3.8 13.6 18.9 80

EITanque [11] 63.7 4.7 15.9 23.4 64

SNUVL (Ensemble) 65.7 3.6 14.7 23.9 50

CT-SAN (Single) 63.8 4.5 14.1 20.9 67

CT-SAN (Ensemble) 67.0 5.1 16.3 25.2 46

Table 2. Performance comparison for the multiple-choice test (ac-

curacy in percentage) and movie retrieval task: Recall@k (R@k,

higher is better) and Median Rank (MedR, lower is better).

BLEU language metrics, and (2, 1, 1)-th in the other lan-

guage metrics. That is, our approach ranks first in four met-

rics, which means that our approach is comparable to the

state-of-the-art methods. In order to quantify the improve-

ment by the proposed concept word detection and semantic

attention, we implement a variant (Base-SAN), which is our

model of Fig.2 without those two components. As shown

in Table 1, the performance gaps between (CT-SAN) and

(Base-SAN) are significant.

Movie Fill-in-the-Blank. Table 1 also shows the re-

sults of the fill-in-the-blank task. We test an ensemble of

our models, denoted by (CT-SAN) (Ensemble); the answer

word is obtained by averaging the output word probabilities

of three identical models trained independently. Our ap-

proach outperforms all the participants with large margins.

We also compare our model with a couple of baselines: (CT-

SAN) outperforms the simple single-layer LSTM/BLSTM

variants with the scoring layer on top of the blank location,

and (Base-SAN), which is the base model of (CT-SAN)

without the concept detector and semantic attention.

Movie Multiple-Choice Test. For the multiple-choice

test, our approach also ranks first as shown in Table 2. As

in the fill-in-the-blank, the multiple-choice task also bene-

fits from the concept detector and semantic attention. More-

over, an ensemble of six models trained independently fur-

ther improves the accuracy from 63.8% to 67.0%.

Movie Retrieval. Table 2 compares Recall@k (R@k)

and Median Rank (MedR) metrics between different meth-

ods. We also achieve the best retrieval performance with

significant margins from baselines. Our (CT-SAN) (Ensem-

ble) obtains the video-sentence similarity matrix with an en-

semble of two different models. First, we train six retrieval

models with different parameter initializations. Second, we

obtain the similarity matrix using the multiple-choice ver-

sion of (CT-SAN), because it can also generate a similar-

ity score for a video-sentence pair. Finally, we average the

seven similarity matrices into the final similarity matrix.

4.3. Qualitative Results

Fig.4 illustrates qualitative results of our algorithm with

correct or wrong examples for each task. In each set, we

show sampled frames of a query video, groundtruth (GT),

our prediction (Ours), and the detected concept words. We

provide more examples in the supplementary file.

Movie Description. Fig.4(a)-(b) illustrates examples of

our movie description. The predicted sentences are often

related to the content of clips closely, but the words them-

selves are not always identical to the GTs. For instance,

the generated sentence for Fig.4(b) reads the clock shows a

minute, which is relevant to the video clip although its GT

sentence much focuses on awards on a shelf. Nonetheless,

the concept words relevant to the GT sentence are well de-

tected such as office or clock.

Movie Fill-in-the-Blank. Fig.4(c) shows that the de-

tected concept words are well matched with the content

of the clip, and possibly help predict the correct answer.

Fig.4(d) is a near-miss case where our model also predict a

plausible answer (e.g. run instead of hurry).

Movie Multiple-Choice Test. Fig.4(e) shows that our

concept detection successfully guides the model to select

the correct answer. Fig.4(f) is an example of failure to un-

derstand the situation; the fifth candidate is chosen because
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GT : The sun sets behind the watery horizon as the foursome 

continues along the shore toward a distant resort. 

Ours : The sun shines as the sun sets to the horizon.

Concepts: cloud, sky, sun, horizon, vast, shore, distance, light, 

boat, white

GT : We can see awards line a shelf in his office.

Ours : The clock shows a minute, then the screen shows a map 

of the mothership.

Concepts : read, screen, office, clock, row, red, show, name, 

map, down(a) (b)

Blank Sentence : He slows down in front of one _____ with a triple 

garage and box tree on the front lawn and pulls up onto the driveway.

Answer : house Our result : house

Concepts : drive, car, pull, down, front, outside, house, street, get, 

road

Blank Sentence : People _____ down the path and hide behind 

the pile of pumpkins.

Answer : hurry Our result : run

Concepts : tree, down, towards, run, walk, people, stone, house, 

forest, river(c) (d)

Correct Wrong

Candidate Sentences

① SOMEONE glares at SOMEONE, his lips curved into a frown.

② SOMEONE follows, looking dazed. (GT Answer)

③ The kid walks into the garage and sees him.

④ He comes towards her and pulls up a chair.

⑤ He walks down the hall past an open doorway and starts to go 

upstairs.

Concepts : room, hall, back, walk, down, stand, go, step, smile, see

Candidate Sentences

① SOMEONE slams SOMEONEs head against the trunk.

② Now, the car speeds down an empty road lined with tall 

evergreens that just into the pale blue sky. (GT Answer)

③ SOMEONE sets hers down and smiles.

④ Now she lies on top of him.

⑤ As SOMEONE gazes after them, SOMEONE approaches.

Concepts : car, drive, road, pull, down, street, house, get, speed, 

front (e) (f)

Q : They notice SOMEONE swimming.

Concepts: water, pool, back, watch, down, stare, arm,  smile, gaze, 

boy

Q : SOMEONE cocks her head, her mouth twitching.

Concepts : smile, down, back, gaze, stare, woman, blonde, 

head, watch, lip 

24th

(g) (h)

Figure 4. Qualitative examples of the four vision-to-language tasks: (a)-(b) movie description, (c)-(d) fill-in-the-blank, (e)-(f) multiple-

choice, and (g)-(h) movie retrieval. The left column shows correct examples while the right column shows wrong examples. In (h), we also

show our retrieval ranks of the GT clips (the red box), 24th. We present more, clearer, and larger examples in the supplementary file.

it is overlapped with much of detected words such as hall,

walk, go, although the correct answer is the second.

Movie Retrieval. Interestingly, the concept words of

Fig.4(g) capture the abstract relation between swimming,

water, and pool. Thus, the first to fifth retrieved clips in-

clude water. Fig.4(h) is a near-miss example in which our

method fails to catch rare word like twitch and cocks. The

first to fourth retrieved clips contain a woman’s head and

mouth, yet miss to catch subtle movement of mouth.

5. Conclusion

We proposed an end-to-end trainable approach for de-

tecting a list of concept words that can be used as semantic

priors for multiple-video-to-language models. We also de-

veloped a semantic attention mechanism that effectively ex-

ploits the discovered concept words. We implemented our

approach into multiple video-to-language models to partic-

ipate in four tasks of LSMDC 2016. We demonstrated that

our method indeed improved the performance of video cap-

tioning, retrieval, and question answering, and finally won

three tasks in LSMDC 2016, including fill-in-the-blank,

multiple-choice test, and movie retrieval.
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