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Abstract

The attention mechanisms in deep neural networks are

inspired by human’s attention that sequentially focuses on

the most relevant parts of the information over time to gen-

erate prediction output. The attention parameters in those

models are implicitly trained in an end-to-end manner, yet

there have been few trials to explicitly incorporate human

gaze tracking to supervise the attention models. In this pa-

per, we investigate whether attention models can benefit

from explicit human gaze labels, especially for the task of

video captioning. We collect a new dataset called VAS, con-

sisting of movie clips, and corresponding multiple descrip-

tive sentences along with human gaze tracking data. We

propose a video captioning model named Gaze Encoding

Attention Network (GEAN) that can leverage gaze track-

ing information to provide the spatial and temporal atten-

tion for sentence generation. Through evaluation of lan-

guage similarity metrics and human assessment via Ama-

zon mechanical Turk, we demonstrate that spatial atten-

tions guided by human gaze data indeed improve the perfor-

mance of multiple captioning methods. Moreover, we show

that the proposed approach achieves the state-of-the-art

performance for both gaze prediction and video captioning

not only in our VAS dataset but also in standard datasets

(e.g. LSMDC [24] and Hollywood2 [18]).

1. Introduction

Attention-based models have recently gained much in-

terest as a powerful deep neural network architecture in

a variety of applications, including image captioning [35],

video captioning [15], action recognition [27], object recog-

nition [1], and machine translation [2] to name a few. The

attention models are loosely inspired by visual attention

mechanism of humans, who do not focus their attention on

the entire scene at once, but instead sequentially adjust the

focal points on different parts of the scene over time.

Although the attention models simulate human’s atten-

tion, surprisingly there have been few trials to explicitly in-

corporate human gaze tracking labels to supervise the atten-

tion mechanism. Usually attention models are trained in an

end-to-end manner, and thus attention weights are implicitly

learned. In this paper, we aim at investigating whether the

explicit human gaze labels can better guide attention models

and eventually enhance their prediction performance. We

focus on the task of video captioning, whose objective is to

generate a descriptive sentence for a given video clip. We

choose the video captioning because the attention mecha-

nism may have more room to play a role in summarizing a

sequence of frames that may contain too much information

for a short output sentence. It is worth noting that our objec-

tive is not to replace existing video captioning methods for

every use case, given that acquisition of human gaze data

is expensive. Instead, we study the effect of supervision by

human gaze for attention mechanism, which has not been

discussed in previous literature.

We collect a new dataset named VAS (Visual Attentive

Script), consisting of movie videos of 15 seconds long,

with multiple descriptive sentences and gaze tracking data.

For pretraining and evaluation of models, we also lever-

age large-scale caption-only LSMDC dataset [24] and gaze-

only Hollywood2 eye movement dataset [17, 18].

To explicitly model the gaze prediction for sentence gen-

eration, we propose a novel video captioning model named

Gaze Encoding Attention Network (GEAN). The encoder

generates pools of visual features depending on not only

content and motion in videos, but also gaze maps predicted

by the recurrent gaze prediction (RGP) model. The decoder

generates word sequences by dynamically focusing on the

most relevant subsets of the feature pools.

Through quantitative evaluation using language met-

rics and human assessment via Amazon Mechanical Turk

(AMT), we show that human gaze indeed helps enhance the

video captioning accuracy of attention models. One promis-

ing result is that our model learns from a relatively small

amount of gaze data of VAS and Hollywood2 datasets, and

improves the captioning quality on LSMDC dataset with no

gaze annotation. It hints that potentially we could leverage

gaze information in a semi-supervised manner, and apply
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domain adaptation or transfer learning to boost the perfor-

mance further.

To conclude the introduction, we highlight major contri-

butions of this work as follows.

(1) To the best of our knowledge, our work is the first to

study the effect of supervision by human gaze data on atten-

tion mechanisms, especially for the task of video caption-

ing. We empirically show that the performance of multiple

video captioning methods increases with the spatial atten-

tion learned from human gaze tracking data.

(2) We collect the dataset called VAS, consisting of 15

second-long movie clips, and corresponding multiple de-

scriptive sentences and human gaze tracking labels. As far

as we know, there has been no video dataset that associates

with both caption and gaze information.

(3) We propose a novel video captioning model named

Gaze Encoding Attention Network (GEAN) that efficiently

incorporates spatial attention by the gaze prediction model

with temporal attention in the language decoder. We demon-

strate that the GEAN achieves the state-of-the-art perfor-

mance for both gaze prediction and video captioning not

only in our VAS dataset but also in the standard datasets

(e.g. LSMDC [24] and Hollywood2 [18]).

Related work. We briefly review several representative

papers of video captioning. Although several early mod-

els successfully tackle the video captioning based on the

framework of CRF [25], topic models [6], and hierarchi-

cal semantic models [9], recent advances in deep neural

models have led substantial progress for video captioning.

Especially, multi-modal recurrent neural network models

have been exploited as a dominant approach; some no-

table examples include [7, 22, 33, 34]. These models adopt

encoder-decoder architecture; the encoder represents the vi-

sual content of video input via convolutional neural net-

works, and the decoder generates a sequence of words from

the encoded visual summary via recurrent neural networks.

Among papers in this group, [15] and [36] may be the most

closely related to ours, because they are also based on atten-

tion mechanisms for caption generation. Compared to all

the previous video captioning methods, the novelty of our

work is to leverage the supervision of attention using hu-

man gaze tracking labels. Moreover, our experiments show

that such gaze information indeed helps improve video cap-

tioning performance.

2. Video Datasets for Caption and Gaze

We use three movie video datasets, including (i) caption-

only LSMDC [24], and (ii) gaze-only Hollywood2 EM (Eye

Movement) [17, 18], and (iii) our newly collected VAS

dataset with both captions and gaze tracking data. Since the

LSMDC and Hollywood2 EM are more large-scale than our

VAS, they are jointly leveraged for pretraining. Table 1 sum-

marizes some of basic statistics of the datasets.

LSMDC [24]. This dataset is a combination of recently

published two large-scale movie datasets, MPII-MD [23]

and M-VAD [30]. It consists of 108,470 clips in total, and

associates about one sentence with each clip. The text is

obtained from the descriptive video service (DVS) of the

movies. The clips of MPII-MD and and M-VAD are sam-

pled from 72 and 92 commercial movies, and have lengths

of 3.02 and 6.13 seconds long on average, respectively.

Hollywood2 EM [17]. This dataset is originally pro-

posed for action recognition of 12 categories from 69

movies. Later [18] collects eye gaze data from 16 subjects

for all 1,707 video clips, using the SMI iView X HiSpeed

1250 eye tracker.

VAS. The Visual Attentive Script (VAS) dataset includes

144 emotion-eliciting clips of 15 seconds long. For each

video clip, we collect multiple tracking data of subjects’

gazes and pupil sizes using EyeLink 1000 plus eye tracker.

We invite 31 subjects, each of whom generates eye gaze

data for 48 clips. We let subjects to freely watch a video

clip to record gaze tracking, and then request to describe it

in three different sentences (i.e. one general summary sen-

tence, and two focused sentences on storyline, and charac-

ters on background). Since clips are sampled from commer-

cial movies, we observe rather stable gaze tracking across

subjects. Also, a 15-sec clip often includes much content;

it can be easier for subjects to resolve their understanding

with different aspects of short sentences. We defer the de-

tails of data collection and analyses to the supplementary.

3. Approach

We propose Gaze Encoding Attention Networks

(GEAN), as shown in Fig.1. We first extract three types

of CNN features for scene, motion, and fovea per frame

(section 3.1). The recurrent gaze prediction (RGP) model

learns from human gaze to decide which parts of scenes to

be focused (section 3.2). The encoder creates feature pools

using content and motion in a video with spatial attention

guided by the RGP model (section 3.3). The decoder

produces a word sequence by sequentially focusing on the

most relevant subsets of the feature pools (section 3.4).

3.1. Video Pre-processing and Description

We equidistantly sample one per five frames from a

video, to reduce the frame redundancy and memory con-

sumption while minimizing loss of information. We denote

the number of video frames as N . We extract three types

of video features (i.e. scene, motion, and fovea features), all

of which have dimensions of 1, 024. (1) Scene: To present

a holistic view of each video scene, we extract the scene

description from the pool5/7x7s1 layer of GoogLeNet [29]

that is pretrained on Places205 [37] dataset. Each input

frame is scaled to 256×256, and center-cropped to a 227×
227 region. (2) Motion: We extract spatio-temporal motion
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# videos
# sentences Vocabulary Median length # gaze data

# subjects
(per video) size of sentence (per video)

VAS 144 4,032 (28) 2,515 10 1,488 (10–11) 31

LSMDC [24] 108,470 108,536 (1–2) 22,898 6 – –

Hollywood2 EM [17, 18] 1,707 – – – 27,312 (16) 16

Table 1: Statistics of our novel VAS, caption-only LSMDC, and gaze-only Hollywood2 EM datasets.

representation from the conv5b layer (i.e. R7×7×1,024) of

the pretrained C3D network [31] on Sports-1M dataset [11].

For each frame, we input a sequence of previous 16 frames

to the C3D. The input frames are scaled to 112 × 112. (3)

Fovea: We extract the frame representation from the incep-

tion5b layer (i.e. R7×7×1,024) of GoogLeNet [29] pretrained

on ImageNet dataset [26], which is later weighted by spa-

tial attention. The input frames are scaled to 227×227 with-

out center-cropping to ensure that peripheral regions are not

cropped out. We defer the details of how the spatial atten-

tion weights on these features to section 3.3.

To build a dictionary, we first tokenize all words ex-

cept punctuation from LSMDC and VAS datasets, using

wordpunct tokenizer of the NLTK toolbox [4]. We per-

form lowercasing and retain rare words to reserve the orig-

inality of caption datasets. In captions, we replace proper

nouns like characters’ names by SOMEONE token.

3.2. The Recurrent Gaze Prediction (RGP) Model

The goal of the RGP model is to predict a gaze map per

frame of an input video, after learning from human gaze

tracking data. The output gaze map gτ at frame τ is de-

fined as a �1-normalized (49 × 49) matrix that indicates

a probability distribution of where to attend in a 49 × 49
grid. We design the RGP model built upon GRUs (Gated

Recurrent Units) [3, 5], followed by three layers of con-

volution transpose (i.e. deconvolution), a 1 × 1 convolu-

tion, and an average-pooling layer. Fig.1(b) shows the struc-

ture. We choose GRUs since they are empirically superior

to model long-term temporal dependency with less param-

eters. Since we deal with a frame sequence, we use a vari-

ant of GRUs (i.e. GRU-RCN in [3]), which replaces fully-

connected units in the GRU with convolution operations:

zτ = σ(Wz ∗ x
τ +Uz ∗ h

τ−1), (1)

rτ = σ(Wr ∗ x
τ +Ur ∗ h

τ−1), (2)

h̃τ = tanh(W ∗ xτ +U ∗ (rτ � hτ−1)), (3)

hτ = (1− zτ )hτ−1 + zτ h̃τ , (4)

where σ is the sigmoid function, ∗ denotes a convolution,

and � is an element-wise multiplication. The input xτ at

frame τ is the C3D motion feature discussed in section

3.1, projected to (7 × 7 × 512) by a linear transforma-

tion (i.e. 1 × 1 convolution). hτ , zτ , and rτ denote the

hidden state, update gate, and reset gate at τ , respectively,

whose dimensions are all (7 × 7 × 128). Model parame-

ters W∗ and U∗ are 2D-convolutional kernels with a size

of k1 × k2 ×Ox ×Oy , where k1 × k2 is the convolutional

kernel size, and Ox and Oy are input and output channel

dimensionality. We set k1 = k2 = 3 as a kernel size. By us-

ing k1 × k2 spatial kernels, the gates h̃τ (i, j), zτ (i, j), and

rτ (i, j) at location (i, j) depend on both local neighborhood

of input xτ and the previous hidden state map hτ−1. Thus,

the hidden recurrent representation hτ can fuse a history of

3D convolutional motion features through time while keep-

ing spatial locality. We then apply a sequence of three trans-

posed convolutions, followed by another 1× 1 convolution,

and softmax to hτ , to obtain a predicted gaze map gτ of

shape (49 × 49). Fig.1(b) also presents dimensions and fil-

ter sizes for each layer operation.

3.3. Construction of Visual Feature Pools

We construct three types of feature pools using the fea-

tures of scene, motion, and fovea discussed in section 3.1.

The first feature pool denoted by {vτ

s}
N
τ=1

is a simple col-

lection of scene features for each frame, where τ is the

frame index from 1 to N . For the next two feature pools,

we use the predicted gaze map as spatial attention weights.

Its underlying rationale is that human perceives focused

regions in a high visual acuity with more neurons, while

peripheral scene fields in a low resolution with less neu-

rons [13]. Roughly simulating such a mechanism occur-

ring in a focused foveal zone in human’s retina, we ob-

tain a spatial attention map α
τ ∈ R

7×7 by average-pooling

gτ ∈ R
49×49 with a (7 × 7) kernel, and adding a uniform

distribution with a strength of λ. Our empirical finding is

that adding a uniform distribution leads to better perfor-

mance; relying on only a very focused region can be risky to

ignore too much relevant parts in the scene. We use λ = 0.6
via cross validation. Finally, we �1-normalize α

τ to yield

a probability map. Next we define the motion and fovea

feature pools (i.e. {vτ

m}N
τ=1

and {vτ

f}
N
τ=1

) as follows. We

compute each vτ

m / vτ

f at frame τ as a weighted sum of

element-wise dot-product between α
τ and the motion/fovea

features, both of which have dimension of (7× 7× 1, 024)
as presented in section 3.1. For example, each vτ

m ∈ R
1,024

is computed as vτ

m(k) =
�

7

i=1

�
7

j=1
α

τ (i, j)fτm(i, j, k),
where fτm is the C3D conv5b motion feature at frame τ .

We then set the maximum lengths of pools denoted by
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Figure 1: Illustration of the proposed Gaze Encoding Attention Network (GEAN) architecture. After extracting three types of CNN

features per frame, the encoder generates pools of visual features using content and motion in videos, weighted by the spatial attention that

the recurrent gaze prediction (RGP) model generates. The decoder generates word sequences by sequentially focusing on the most relevant

subsets of the feature pools. In the RGP model, we present filter sizes inside boxes, and output dimensions next to arrows.

Nmax for scene, motion, and attention features to 20, 35,

and 35 respectively, based on the average length of video

clips. If N < Nmax, we repeat padding again from the

feature of the first frame; otherwise, we uniformly sample

frames to be fit to the limit length. We use a smaller pool

size P for the scene, because its variation across a clip is

smaller than other feature types. We remind that all pooled

features have a dimension of 1, 024.

3.4. The Decoder for Caption Generation

Our decoder for caption generation is designed based

on the soft attention mechanism [2], which has been also

applied in video captioning applications (e.g. [15, 36]).

Thus, the decoder sequentially generates words by selec-

tively weighting on different features in the three pools at

each time. As shown in Fig.1, the decoder consists of a tem-

poral attention module, an attention GRU, an aggregation

layer, and a multimodal GRU.

Temporal attention module. For each feature

pool {vτ}τ , we compute a set of attention weights

{{β1

τ
}τ , · · · , {β

L
τ
}τ} such that

�N

τ=1
βt
τ
= 1 at each time

step t, where N is the length of each visual pool, and L is

the output sentence length. Here t indicates the step for a

output word sequence; it is different with τ in the previous

section, which means the frame index. Thus for each word

t, the distribution {βt
τ
}τ determines the temporal attention.

Since we have three sets of visual pools {vτ

s,m,f}τ , we

also have three sets of attention weights {β}. We let the

attention mechanism for each pool to be independent;

we below drop the subscript s,m, f for simplicity. We

compute a single aggregated feature vector ut ∈ R
1,024

by β-weighted averaging on all the features {vτ}τ in each

pool:

ut =

N�

τ=1

βt
τ
vτ , where βt

τ
=

exp(qt
τ
)�

τ
� exp(qt

τ
�)
, (5)

qt
τ
= w�φ(Wqv

τ +Uqh
t−1

att + bq), (6)

where each attention weight βt
τ

is obtained by applying a

sequential softmax to scalar attention scores {qt
τ
}τ . The pa-

rameters includes w ∈ R
64×1, Wq ∈ R

64×1,024, Uq ∈
R

64×512 are shared for each feature pool at all time steps.

The activation φ is a scaled hyperbolic tangent function (i.e.

stanh(x) = 1.7159 · tanh(2x/3)), and ht−1

att ∈ R
512 is the

previous hidden state of the attention GRU, which will be

discussed below.

Attention GRU. Our attention GRU has the same form

with the normal GRU [5] as follows:

ztatt = σ(Wzx
t
att +Uzh

t−1

att + bz), (7)

rtatt = σ(Wrx
t
att +Urh

t−1

att + br), (8)

h̃t
att = tanh(Whx

t
att +Uh ∗ (rtatt � ht−1

att )), (9)

ht
att = (1− ztatt)� ht−1

att + ztatt � h̃t
att. (10)

The input xt
att is an embedding of the previous word:

xt
att = Bwt−1, where wt−1 is a V × 1 one-hot vector, and

B ∈ R
512×V is a word embedding parameter. The hidden

state representation ht
att is the input to both the temporal

attention module and the aggregation layer; that is, it influ-

ences not only the attention on the feature pools but also the

generation of a next probable word.
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Aggregation layer. Note that the attention feature vec-

tors in Eq.(5) are obtained for each channel of scene, mo-

tion, and fovea separately: ut
s, ut

m, and ut
f , which are then

fed into the aggregation layer.

qt = φ(([Ws
gu

t
s � Wm

g ut
m � Wf

gu
t
f ] + bg)�Ugh

t
att)

(11)

where � denotes the vector concatenation, and parameters

include Ws
g ∈ R

256×1,024,Wm
g ∈ R

256×1,024,Wf
g ∈

R
512×1,024,bm ∈ R

1,024×1 and Ug ∈ R
1,024×512. We ap-

ply a dropout regularization [28] with a rate of 0.5 to the

aggregation layer, which mixes each feature channel rep-

resentation with previous word information via the hidden

state ht
att of the attention GRU. It then outputs a vector

qt ∈ R
1,024, based on which the multimodal GRU gen-

erates a next likely word.

Multimodal GRU. The multimodal GRU has the same

structure with the attention GRU with only difference that

input xt
m is a concatenation of the output of the aggrega-

tion layer and the previous word embedding: [qt,Bwt−1] ∈
R

1,536. That is, the multimodal GRU couples attended vi-

sual features with embedding of the previous word. The hid-

den state ht
m is fed into a softmax layer over all the words

in the dictionary to predict the index of a next word:

p(wt | w1:t−1) = softmax(Wouth
t
m + bh), (12)

where parameters include Wout ∈ R
V×512 and bh ∈

R
V×1. We use a greedy decoding scheme to choose the best

word wt that maximizes Eq.(12) at each time step.

Spatial and temporal Attention. The proposed GEAN

model leverages both spatial and temporal attention. The

spatial attention is used for generating feature pools that are

weighted by gaze maps predicted by the RGP model. The

temporal attention is used for selecting a subset of feature

pools for word generation by modules in the decoder. By se-

quentially running the two attentions, we can significantly

reduce the dimensionality of spatio-temporal attention com-

pared to other previous work (e.g. [27, 36]), which allows

us to train the model with fewer training data. Moreover, it

also resembles human’s perceptual process that is initially

sensitive to visual stimuli, and then creates words using the

memory about visual experience.

3.5. Training

We first train the RGP model, and then learn the entire

GEAN model while fixing parameters of the RGP model.

This two-step learning leads to better performance than al-

lowing parameter update.

Training of the RGP model. We obtain groundtruths

of gaze maps from human gaze tracking data in the train-

ing sets of VAS and Hollywood2. Following [18], we first

build a (49 × 49) binary fixation map from raw gaze data,

and then apply Gaussian filtering with σ = 2.0 and �1-

normalization to obtain a (49 × 49) groundtruth gaze map,

which can be seen as a valid probability distribution of eye

fixation. We use the averaged frame-wise cross-entropy loss

between predicted and GT gaze maps. We minimize the loss

with Adam optimizer [12], with an initial learning rate of

10−4. To reduce overfitting further, we use data augmenta-

tion of image mirroring.

Training of the GEAN model. We limit the maximum

length L of training sentences to 80 words. We use the

cross-entropy loss between predicted and GT words with

�2-regularization to avoid overfitting. We use orthogonal

random initialization for two GRUs, and Xavier initializa-

tion [8] for convolutional and embedding layers. We use

Adam optimizer [12] with an initial learning rate of 10−4.

4. Experiments

We first validate the performance of the recurrent gaze

prediction (RGP) model for gaze prediction in section 4.1

We then report quantitative results of human gaze super-

vision on the attention-based captioning in section 4.2. Fi-

nally, we present AMT-based human assessment results for

captioning quality in section 4.3. We defer more thorough

experimental results to the supplementary. We plan to make

public our source code and VAS dataset.

For evaluation, we randomly split VAS dataset into

60/40% as training and test sets. For LSMDC and Holly-

wood2 dataset, we use the split provided by original papers

[24] and [18], respectively.

4.1. Evaluation of Gaze Prediction

We evaluate gaze prediction performance by measur-

ing similarities between the predicted and groundtruth (GT)

gaze maps of test sets. We follow the evaluation protocol

of [10, 18, 19]. Each algorithm predicts a (49 × 49) gaze

map for each frame, to which we apply Gaussian filtering

with σ = 2.0. We then upsample it to the original frame

size using bilinear interpolation. The GT gaze map is ob-

tained by averaging multiple subjects’ fixation points, fol-

lowed by a Gaussian filtering with σ = 19. After min-max

normalization of predicted and GT gaze maps in a range of

[0, 1], we compute performance metrics averaged over all

the frames of each test clip. The performance measures in-

clude the similarity metric (Sim), linear correlation coeffi-

cient (CC), shuffled AUC (sAUC) and Judd implementation

of AUC (AUC), whose details can be found in [21]. To com-

pare with the results in [18], we follow the evaluation proce-

dure of [18]; we uniformly sample 10 sets of 3,000 frames

from test video clips, and report averaged performance.

Baselines. The ShallowNet [19] is one of the state-of-

the-art methods for saliency or fixation prediction. Since it

is designed for images not for videos, we test two different
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VAS Hollywood2 EM

Metrics Sim CC sAUC AUC Sim CC sAUC AUC

ShallowNet [19] 0.361 0.407 0.498 0.821 0.369 0.433 0.501 0.855

ShallowNet+GRU 0.338 0.414 0.495 0.856 0.350 0.438 0.508 0.884

C3D+Conv 0.347 0.399 0.643 0.860 0.445 0.561 0.663 0.907

C3D+GRU 0.344 0.425 0.507 0.861 0.466 0.554 0.570 0.909

RGP (Ours) 0.483 0.586 0.702 0.912 0.478 0.588 0.682 0.924

Table 2: Evaluation of gaze prediction on the VAS and Hollywood 2 dataset.

Method Random Uniform Central Bias [18] SF+MF+CB [18] Human [18] RGP (Ours)

AUC 0.500 0.840 0.871 0.936 0.924

Table 3: Gaze prediction results in terms of AUC for Hollywood2 dataset.

��� ���

�����

��

���
������

����������

���

Figure 2: Examples of gaze prediction for video clips of Hollywood2 in (a–b) and VAS in (c). In each set, we show five

representative frames of the clip, along with GTs and predicted gaze maps predicted by different methods.

versions; we separately apply it to individual frames, de-

noted by (ShallowNet), and integrate it with the GRU [5]

for sequence prediction, denoted by (ShallowNet+GRU).

We also experiment two variants of our model to validate

the effects of the recurrent component; (C3D+Conv) is our

(RGP) excluding the GRU-RCN part, and (C3D+GRU) re-

places the recurrent structure with vanilla GRU.

Quantitative results. Table 2 reports gaze prediction

results of multiple models on VAS and Hollywood2 EM

datasets. The variants of ShallowNets do not accurately cap-

ture human gaze sequences, and even with the recurrent

model of (ShallowNet+GRU). Thanks to the represen-

tative power of the C3D motion feature and effectiveness

of our recurrent model, the proposed (RGP) model signifi-

cantly outperforms all the baselines in all evaluation metrics

with large margins. Another advantage of the RGP model is

that it needs relatively fewer parameters compared to other

baselines, being beneficial for integrating with video cap-

tioning models without a risk of overfitting. Table 3 com-

pares our results with the best results of Hollywood2 re-

ported in [18] in terms of the AUC metric. Our AUC of

0.924 is significantly higher than the best reported AUC of

0.871 in [18], only slightly worsen than the human level of

0.936. For VAS evaluation, we train models using the com-

bined training set from VAS and Hollywood2, because the

VAS dataset size is relatively small. For Hollywood2 evalu-

ation, we use Hollywood2 training data only to fairly com-

pare with the results of [18].

Qualitative results. Fig.2 presents comparison of gaze

prediction results between different methods and GTs on

VAS and Hollywood2 datasets. While the baselines, includ-

ing (ShallowNet) and (ShallowNet+GRU), do not cor-

rectly localize the gaze point with a bias toward the center.

On the other hand, our model can effectively localize gaze

points over frame sequences.

4.2. Evaluation of Video Captioning

In previous section, we validate that the proposed gaze

prediction achieves state-of-the-art performances. Based on

such dependably predicted gaze maps, we test how much

they help improve attention-based captioning models. For

evaluation, each video captioning method predicts a sen-

tence for a test video clip, and we measure the performance

by comparing between its prediction and the groundtruth

sentence. We use four different language similarity metrics,

BLEU [20], METEOR [14], ROUGE [16] and CIDEr [32].

Baselines. We compare with four state-of-the-art video

captioning methods. First, (Temp-Attention) [15] is

one of the first soft temporal attention models for video cap-

tioning. Second, the S2VT [33] is a sequence-to-sequence

model that directly learns mappings between frame se-

quences to word sequences. We test two variants de-

noted by (S2VT+VGG16) and (S2VT+GNet) according to

frame representation VGGNet-16 and GoogLeNet. Finally,
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Dataset VAS LSMDC

Language metrics B1 B2 B3 M R Cr B1 B2 B3 M R Cr

No spatial attention by gaze maps (i.e. without RGP)

Temp-Attention [15] 0.139 0.049 0.028 0.039 0.124 0.035 0.082 0.028 0.009 0.043 0.117 0.047

S2VT+VGG16 [33] 0.241 0.091 0.051 0.068 0.195 0.060 0.162 0.051 0.017 0.070 0.157 0.088

S2VT+GNet [33] 0.233 0.088 0.043 0.069 0.189 0.058 0.142 0.041 0.015 0.065 0.153 0.083

h-RNN+GNet+C3D [36] 0.255 0.099 0.038 0.067 0.181 0.055 0.128 0.038 0.011 0.066 0.156 0.070

GEAN+GNet 0.259 0.102 0.041 0.068 0.196 0.057 0.154 0.050 0.016 0.067 0.153 0.091

GEAN+GNet+C3D 0.264 0.105 0.042 0.070 0.201 0.058 0.166 0.050 0.018 0.068 0.154 0.095

GEAN+GNet+C3D+Scene 0.274 0.118 0.046 0.075 0.211 0.080 0.166 0.050 0.018 0.069 0.157 0.084

Spatial attention by RGP predicted gaze maps (i.e. with RGP)

Temp-Attention [15] 0.147 0.049 0.029 0.046 0.149 0.048 0.085 0.028 0.011 0.046 0.121 0.057

S2VT+GNet [33] 0.268 0.101 0.044 0.073 0.199 0.069 0.131 0.038 0.013 0.066 0.153 0.080

h-RNN+GNet+C3D [36] 0.273 0.101 0.045 0.073 0.196 0.073 0.146 0.046 0.017 0.067 0.151 0.074

GEAN+GNet 0.282 0.119 0.049 0.077 0.209 0.075 0.152 0.051 0.016 0.068 0.152 0.081

GEAN+GNet+C3D+Scene 0.306 0.125 0.049 0.084 0.229 0.084 0.168 0.055 0.021 0.072 0.156 0.093

Table 4: Evaluation of video captioning with or without the RGP model for VAS and LSMDC datasets. For language metrics,

we use BLEU (B), METEOR (M), ROUGE (R), and CIDEr (Cr), in all of which higher is better.

Dataset (GEAN) w/ RGP Uniform Random Gaze Central Gaze Peripheral Gaze

LSMDC 0.072 0.069 0.056 0.061 0.057

VAS 0.084 0.075 0.062 0.073 0.068

Table 5: METEOR score comparison between learned and various fixed gaze weights.

(h-RNN+GNet) [36] is a hierarchical RNN model that also

leverages a soft attention scheme to generate multiple sen-

tences. For (Temp-Attention), we use the source code

proposed by original authors. For (S2VT+*), we trans-

form the original Caffe code into TensorFlow, in order to

integrate with the gaze prediction module. We implement

(h-RNN+*) by ourselves because no code is available.

Quantitative results. Table 4 shows quantitative results

of different methods for video captioning. We also run mul-

tiple variants of our GEAN model denoted by (GEAN+*)

according to different feature combinations. We perform

two sets of experiments with or without using the spa-

tial attention by gaze maps that the RGP model predicts.

The baselines without the RGP model means that they

are executed as originally proposed. For fair comparison,

we use GoogLeNet inception5b layers as features for all

baselines except (S2VT+VGG16). We obtain the results of

(S2VT+VGG16) for LSMDC dataset from the leaderboard

of the LSMDC challenge. Except this, we generate all the

results by ourselves.

We summarize some experimental consequences as fol-

lows. First, the proposed GEAN models achieve the best

performance in each group of experiments for both datasets

and with or without the RGP model. Second, we ob-

serve that the performance of most methods increases with

using spatial attention by gaze maps that the RGP pre-

dicts, although the GEAN methods benefit the most from

gaze prediction. Such improvement is less significant in

LSMDC than VAS dataset, mainly because LSMDC has

no gaze tracking data for training. We remind that the

RGP model is trained with VAS and Hollywood2 datasets.

Finally, experiments assure that it is the best for the

GEAN model to use all the three visual feature pools, as

(GEAN+GNet+C3D+Scene) attains the highest values in

all the four groups of experiments.

Effects of different gaze weights. Table 5 compares

captioning performance between different gaze weights

within the RGP module. For brief comparison, we report

only METEOR scores. In the table, the performance with

learned gazes by our model comes in the first column, and

those of other baselines follow. The uniform gaze assigns

a uniform 1/49 weight to 7 × 7 grid. The random gaze se-

lects a single bin randomly, while the central gaze picks the

center (4, 4) bin in the grid. Then, those one hot matrices

of random and central gaze are smoothed by Gaussian fil-

tering with σ = 1.0. Finally, the peripheral gaze is an �1-

normalized inverse of the central gaze. As shown in Table

5, the learned gaze by our model leads the best captioning

performance. Among the fixed gaze weights, the uniform

gaze is the best, which hints that it is better using the whole

scene than attending on wrong parts of the scene.

Qualitative results. Fig.3 shows three examples of

video captioning results for (a) correct description, (b) rel-

evant description, and (c) incorrect description. In frames,

we present GT human eye fixation with colored circles, and

gaze prediction with white for attended regions. We also

show the captions predicted by different methods along with

GTs. We observe that the spatial attention predicted by our
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(GEAN) w/ RGP vs (S2VT) w/ RGP (h-RNN) w/ RGP (Temp-Attention) w/ RGP

LSMDC 58.7 % (176/300) 59.3 % (178/300) 73.7 % (221/300)

VAS 61.0 % (183/300) 69.7 % (209/300) 76.7 % (230/300)

Table 6: The results of Amazon Mechanical Turk (AMT) pairwise preference tests on LSMDC and VAS datasets. We present

the percentages of responses that turkers vote for (GEAN) w/ RGP against baselines with RGP.

(GEAN) (S2VT) (h-RNN) (Temp-Attention)

LSMDC 65.3 % (196/300) 58.0 % (174/300) 59.7 % (179/300) 60.7 % (182/300)

VAS 67.0 % (201/300) 60.7 % (182/300) 62.7 % (188/300) 63.3 % (190/300)

Table 7: The results of AMT pairwise preference tests between the models with or without RGP. For example, the second

column shows the percentages of Turkers’ votes for (S2VT) with RGP against (S2VT) without RGP.

(GEAN) Someone is dancing with Someone in the club.
(Temp-Attention) Someone walks away and Someone faces Someone.
(S2VT+GNet)The team is dancing with a red haired woman in a white dress.
(GT) (1) People and squirrels dance in the party place. (2) A squirrel slides from

a car dancing in the club with a pool. (3) People and hamsters dances in the house.

(GEAN)The car pulls up and a black suv speeds along the road and the road is 

blocked by a collision.
(Temp-Attention)Someone drives a truck.
(S2VT+GNet)The car pulls up the car and the truck crashes into the road.
(GT)(1) car runs fast in a tunnel where there is an explosion while someone is 

aiming it. (2) Someone runs away from the police making numerous casualties.

(GEAN)There is a woman dancing with someone on stage.
(Temp-Attention)A man in a suit takes off his jacket.
(S2VT+GNet)The two girls are dancing in the audience.
(GT)(1) Someone fight with a sword against people who are surrounding her.  

(2) Someone fights against a lot of people in suits alone. 

(a)

(b)

(c)

Figure 3: Video captioning examples of (a) correct, (b) relevant, and (c) incorrect descriptions. In every frame, we present

groundtruth (GT) human eye fixation with colored circles, and gaze prediction with white for attended regions. We show

captions predicted by different methods along with GTs. We present more, clearer, and larger examples in the supplementary.

method matches well with GT human eye fixation, and de-

scription generated by our method are more accurate than

the baselines. We present more, clearer, and larger exam-

ples in the supplementary.

4.3. Human Evaluation via AMT

We perform user studies using Amazon Mechanical Turk

(AMT) to observe general users’ preferences on the gen-

erated descriptions. We conduct pairwise comparison (A/B

Test); in each AMT task, we show a clip and two captions

generated by different methods in a random order, and ask

turkers to pick a better one without knowing which comes

from which methods. For test cases, we randomly sample

100 examples each from LSMDC and VAS datasets. We

collect answers from three turkers for each test case.

Table 6 shows the results of AMT tests on LSMDC and

VAS datasets, in which we compare our (GEAN) with the

RGP model against the baselines with the RGP, including

(h-RNN), (S2VT), and (Temp-Attention). We observe

that general AMT turkers prefer output sentences of our ap-

proach to those of baselines. Those response margins are

more significant than language metric differences.

Table 7 summarizes the results of AMT tests between the

methods with or without RGP. That is, for both our model

and other baselines, we evaluate how much the gaze predic-

tion by the RGP improves the caption qualities perceived by

general users. Consequently, even baselines with the RGP

model obtains more votes than those without RGP. It can be

another evidence that gaze supervision helps even baselines

to produce better descriptive sentences.

5. Conclusion

We proposed the Gaze Encoding Attention Network

(GEAN) that leverage human gaze data to supervise

attention-based video captioning. With experiments and

user studies on our newly collected VAS, caption-only

LSMDC, and gaze-only Hollywood2 datasets, we showed

that multiple attention-based captioning methods benefit

from gaze information to attain better captioning quality.

We also demonstrated the GEAN model outperforms the

state-of-the-art video captioning alternatives.
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