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Abstract

This paper proposes a novel tracker which is controlled

by sequentially pursuing actions learned by deep reinforce-

ment learning. In contrast to the existing trackers using

deep networks, the proposed tracker is designed to achieve

a light computation as well as satisfactory tracking accu-

racy in both location and scale. The deep network to con-

trol actions is pre-trained using various training sequences

and fine-tuned during tracking for online adaptation to

target and background changes. The pre-training is done

by utilizing deep reinforcement learning as well as super-

vised learning. The use of reinforcement learning enables

even partially labeled data to be successfully utilized for

semi-supervised learning. Through evaluation of the OTB

dataset, the proposed tracker is validated to achieve a com-

petitive performance that is three times faster than state-

of-the-art, deep network–based trackers. The fast version of

the proposed method, which operates in real-time on GPU,

outperforms the state-of-the-art real-time trackers.

1. Introduction

Visual tracking is one of the fundamental problems in

the computer vision field. Finding the location of the tar-

get object is difficult because of several tracking obstacles

such as motion blur, occlusion, illumination change, and

background clutter. Conventional tracking methods [17, 42,

7, 15, 13] follow target objects using a low-level hand-

crafted feature. Although they achieve computational effi-

ciency and comparable tracking performance, they are still

limited in solving the above-mentioned obstacles because

of their insufficient feature representation.

Recently, tracking methods [35, 14, 24] using convo-

lutional neural networks (CNNs) have been proposed for

robust tracking and vastly improved tracking performance

with the help of rich feature representation. Several algo-

…

…

…

…

Figure 1: The concept of the proposed visual tracking con-

trolled by sequential actions. The first column shows the ini-

tial location of the target, and the second and third columns

show the iterative action flow to find the target bounding

box in each frame. The sequential actions selected by the

proposed method control the tracker to iteratively move the

initial bounding box (blue) to the target bounding box (red)

in each frame.

rithms [35, 14] utilize pre-trained CNNs on a large-scale

classification dataset such as ImageNet [26]. However, due

to the gap between classification and tracking problem, the

pre-trained CNN is not sufficient to solve the difficult track-

ing issues. Nam et al. [24] proposed a tracking-by-detection

algorithm with CNNs trained with tracking video datasets

such as [40, 20] and achieved the better performance com-

pared to the traditional trackers. However, this approach

usually focuses on improving the ability to distinguish the

target and background using the appearance model and may

thus overlook the following problems: (1) inefficient search

algorithms that explore the region of interest and select the

best candidate by matching with the tracking model, and (2)

the need for a large amount of labeled tracking sequences

for training and the inability to utilize unlabeled frames in a

semi-supervised case.
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In this work, to deal with the issues raised above, we pro-

pose a novel tracker to pursue the change of target by repeti-

tive actions controlled by the proposed action-decision net-

work (ADNet). The basic concept of the proposed visual

tracking is depicted in Figure 1. The ADNet is designed

to generate actions to find the location and the size of the

target object in a new frame. The ADNet learns the policy

that selects the optimal actions to track the target from the

state of its current position. In the ADnet, the policy net-

work is designed with a convolutional neural network [4],

in which the input is an image patch cropped at the position

of the previous state and the output is the probability dis-

tribution of actions including translation and scale changes.

This action-selecting process has fewer searching steps than

sliding window or candidate sampling approaches [31, 24].

In addition, since our method can precisely localize the tar-

get by selecting actions, post-processing such as bounding

box regression [24] is not necessary.

We also propose a combined learning algorithm of su-

pervised learning (SL) and reinforcement learning (RL) to

train the ADNet. In the SL stage, we train our network to

select actions to track the position of the target using sam-

ples extracted from training videos. In this step, the network

learns to track general objects without sequential informa-

tion. In the RL stage, the pre-trained network in the SL stage

is used as an initial network. We perform RL via tracking

simulation using training sequences composed of sampled

states, actions, and rewards. The network is trained with

deep reinforcement learning based on policy gradient [38],

using the rewards obtained during the tracking simulation.

Even in the case where training frames are partially labeled

(semi-supervised case), the proposed framework success-

fully learns the unlabeled frames by assigning the rewards

according to the results of tracking simulation.

2. Related Work

2.1. Visual Object Tracking

As surveyed in [41, 29], various trackers have shown

their performance and effectiveness on various tracking

benchmarks [20, 18, 40]. The approach based on Tracking-

by-Detection [10, 11, 1, 17] aims to build a discrimina-

tive classifier that distinguishes the target from the sur-

rounding background. Typically these methods capture the

target position by detecting most matching position using

the classifier. Online boosting methods [10, 11] were pro-

posed to update the discriminative model in online manner.

Multiple instance learning (MIL) [1] and tracking-learning-

detection (TLD) [17] methods were proposed to update

tracking model robust to the noise.

Tracking methods based on correlation filter [2, 7, 13,

15, 5] have attracted attention due to their computational ef-

ficiency and competitive performance. This approach learns

the correlation filter in a Fourier domain with low compu-

tational load. Bolme et al. [2] proposed a minimum out-

put sum of squared error (MOSSE) filter and Henriques et

al. [13] proposed kernelized correlation filters (KCF) with

multi-channel features. Hong et al. [15] proposed the com-

bined system employing short-term correlation tracker and

long-term memory stores. Choi et al. [5, 6] proposed the

integrated tracking system to handle the various type of

correlation filters with attentional mechanism. To overcome

the insufficient representation of the hand-crafted features,

deep convolutional features are utilized in the correlation

filters [8, 9] which have achieved the state-of-the-art perfor-

mance. However, since they need to train various scale-wise

filters to deal with the scale change and compute the deep

features, they are much slower than the traditional correla-

tion filter based methods.

Recently, CNN-based methods [36, 21, 22, 34, 14, 35,

31, 24, 12] have been proposed to learn the tracking mod-

els. Early attempts [36, 21, 22] were suffering from the data

deficiency problem for training their networks. To solve

the insufficient data problem, transferring methods [14, 35]

were proposed by utilizing the pre-trained CNNs on a large-

scale classification dataset such as ImageNet [26]. How-

ever, these methods still have a limitation due to the gap

between the object classification and tracking domain. Re-

cently proposed methods [31, 24, 12] overcome the gap by

training their network with a large amount of tracking video

datasets [40, 20, 29]. Held et al. [12] proposed the track-

ing algorithm which capture the target’s location with deep

regression networks. However, this method has difficulties

to track the target when the target is moving too quickly

or occlusion is happened since it has no online updating

procedure. Tao et al. [31] and Nam et al. [24] proposed

Tracking-by-Detection approach that distinguishes the tar-

get and the surrounding background using the trained CNNs

and successfully achieved the state-of-the-art performance.

However, these methods [31, 24] need computationally in-

efficient search algorithms, such as sliding window or can-

didate sampling.

2.2. Deep Reinforcement Learning

The goal of reinforcement learning (RL) is to learn a pol-

icy that decides sequential actions by maximizing the cumu-

lative future rewards [30]. Recent trends [23, 32, 28, 27] in

RL field is to combine the deep neural networks with RL

algorithms by representing RL models such as value func-

tion or policy. By resorting of the deep features, many diffi-

cult problems such as playing Atari games [23] or Go [27]

can be successfully solved in semi-supervised setting. Also,

several methods were proposed to solve the computer vision

problems, such as object localization [3] or action recogni-

tion [16], by employing the deep RL algorithms.

There are two popular approaches in deep RL algo-
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Figure 2: Architecture of the proposed network. The dashed lines indicate the state transition. In this example, the ‘move

right’ action is selected to capture the target object. This action-decision process is repeated until finalize the location of the

target in each frame.

rithms: Deep Q Networks (DQN) and policy gradient. DQN

is a form of Q-learning with function approximation us-

ing deep neural networks. The goal of DQN is to learn a

state-action value function (Q), which is given by the deep

networks, by minimizing temporal-difference errors [23].

Based on the DQN algorithm, various network architectures

such as Double DQN [32] and DDQN [37] were proposed

to improve performance and keep stability.

Policy gradient methods directly learn the policy by op-

timizing the deep policy networks with respect to the ex-

pected future reward using gradient descent. Williams et

al. [38] proposed REINFORCE algorithm simply using the

immediate reward to estimate the value of the policy. Sil-

ver et al. [28] proposed a deterministic algorithm to improve

the performance and effectiveness of the policy gradient

in high-dimensional action space. In the work of Silver et

al. [27], it is shown that pre-training the policy networks

with supervised learning before employing policy gradient

can improve the performance. In tracking problem, we train

the proposed network with supervised learning to learn the

appearance characteristics of the target objects, and train

action dynamics of the tracking target with reinforcement

learning using policy gradient method.

3. Tracking Scheme Controlled by Actions

3.1. Overview

Visual tracking solves the problem of finding the po-

sition of the target in a new frame from the current po-

sition. The proposed tracker dynamically pursues the tar-

get by sequential actions controlled by the Action-Decision

networks (ADNets) shown in Figure 2 (Details are in Sc-

tion 3.2). The proposed networks predict the action to chase

the target from the position of the current tracker. The

tracker is moved by the predicted action from current state,

and then the next action is predicted from the moved posi-

tion. By repeating this process over the test sequence, we

solve the object tracking problem. The ADNet is pretrained

by supervised learning (Section 4.1) as well as reinforce-

ment learning (Section 4.2). During actual tracking, online

adaptation (Section 4.3) is conducted.

3.2. Problem Settings

Basically our tracking strategy follows Markov Decision

Process (MDP). The MDP is defined by states s ∈ S , ac-

tions a ∈ A, state transition function s′ = f(s, a), and the

reward r(s, a). In our MDP formulation, the tracker is de-

fined as an agent of which goal is to capture the target with

a bounding box shape. The action is defined in a discrete

space and a sequence of actions and states is used to itera-

tively pursue the resulting bounding box location and size

in each frame.

In every frame, the agent decides sequential actions un-

til finalizing the target’s position, and then, goes to the next

frame. The state representation includes the appearance in-

formation at the bounding box of the target and the previous

actions. The agent receives a reward for the final state of the

frame l by deciding whether the agent succeed to track the

object or not. The state and action are represented as st,l and

at,l respectively, for t = 1, ..., Tl and l = 1, ..., L where Tl
is the terminal step at frame l and L denotes the number

of frames in a video. The terminal state in the l-th frame

is transferred to the next frame, i.e., s1,l+1 := sTl,l. In the

following except the sections 4.2 and 4.3, we omit the sub-

script l when we describe MDP in each frame for simplicity.

Action. The action space A consists of eleven types of ac-

tions including translation moves, scale changes, and stop-

ping action as shown in Figure 3. The translation moves

include four directional moves, {left, right, up, down} and

also have their two times larger moves. The scale changes

are defined as two types, {scale up, scale down}, which

maintain the aspect ratio of the tracking target. Each action

is encoded by the 11-dimensional vector with one-hot form.
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Translation moves Scale changes Stop

Figure 3: The defined actions in our method.

State. The state st is defined as a tuple (pt, dt), where

pt ∈ R
112×112×3 denotes the image patch within the

bounding box (we call simply “patch” in the following)

and dt ∈ R
110 represents the dynamics of actions de-

noted by a vector (called by “action dynamics vector” in

the following) containing the previous k actions at t-th it-

eration. The patch pt is pointed by 4-dimensional vector

bt = [x(t), y(t), w(t), h(t)], where (x(t), y(t)) denotes the

center position and w(t) and h(t) denote the width and

height of the tracking box respectively. In a frame image

F , the patch pt at iteration t is defined as,

pt = φ(bt, F ), (1)

where φ denotes the pre-processing function which crops

the patch pt from F at bt ∈ R
4 and resizes it to match

the input size of our network. The action dynamics vec-

tor dt is defined as concatenated past k action vectors. We

store past k actions in the action dynamics vector dt =
[ψ(at−1), ..., ψ(at−k)], where ψ(·) denotes one-hot encod-

ing function. Letting k = 10, dt has 110 dimension since

each action vector has 11 dimension.

State transition function. After decision of action at in

state st, the next state st+1 is obtained by the state tran-

sition functions: patch transition function fp(·) and action

dynamics function fd(·). The patch transition function is

defined by bt+1 = fp(bt, at) which moves the position of

the patch by the corresponding action. The discrete amount

of movements is defined as

∆x(t) = αw(t) and ∆y(t) = αh(t), (2)

where α is 0.03 in our experiments. For example, if ‘left’

action is selected, the position of the patch bt+1 moves to

[x(t) −∆x(t), y(t), w(t), h(t)] and ‘scale up’ action changes

the size into [x(t), y(t), w(t)+∆x(t), h(t)+∆y(t)]. The other

actions are defined in a similar manner. The action dynam-

ics function is defined by dt+1 = fd(dt, at) which represent

the transition of action history. When the ‘stop’ action is se-

lected, we finalize the patch position for the target in the

current frame, the agent will receive the reward, and then

the resulting state is transferred to the initial state of the

next frame.

Reward. The reward function is defined as r(s) since the

agent obtains the reward by the state s regardless of the ac-

tion a. The reward r(st) keeps zero during iteration in MDP

in a frame. At the termination step T , that is, aT is ‘stop’ ac-

tion, r(sT ) is assigned by,

r(sT ) =

{

1, if IoU(bT , G) > 0.7

−1, otherwise,
(3)

where IoU(bT , G) denotes overlap ratio of the terminal

patch position bT and the ground truth G of the target with

intersection-over-union criterion. The tracking score zt is

defined as the terminal reward, zt = r(sT ), which will be

used to update model in reinforcement learning.

3.3. ActionDecision Network

The pre-trained VGG-M model [4] is used to initialize

our network. Small CNN models such as VGG-M [4] are

more effective in the visual tracking problem than deep

models [24]. As illustrated in Figure 2, our network has

three convolutional layers {conv1, conv2, conv3}, which

are identical to the convolutional layers of VGG-M net-

works. The next two fully connected layers {fc4, fc5} are

combined with the ReLU and dropout layers, and each has

512 output nodes. The output of fc5 layer is concatenated

with the action dynamics vector dt which has 110 dimen-

sions. The final layers {fc6, fc7} predict the action proba-

bilities and confidence score of the given state respectively.

The parameter of the i-th layer is denoted by wi and the

whole network parameter by W .

The fc6 layer has 11 output units and is combined with

softmax layer, which represent the conditional action prob-

ability distribution p(a|st;W ) for the given state. The prob-

ability p(a|st;W ) means the probability of selecting action

a in the state st. As shown in Figure 2, the proposed net-

work iteratively pursues the target position. The agent se-

lects actions sequentially and updates states until finalizing

the position of target. The final state is reached by selecting

stop action or falling in the oscillation case. The oscilla-

tion case occurs, for example, when the sequential actions

are obtained as {left, right, left}, which means the agent

is coming back to the previous state. The confidence layer

(fc7) with two output units produces the probability of tar-

get and background class for the given state st. The target

probability p(target|st;W ) is used as the confidence score

of the tracker at st. The confidence score is utilized for the

online adaptation during tracking (Section 4.3).

4. Training of ADNet

In this section, we describe the training frameworks for

ADNet. First, in offline manner, ADNet is pretrained by su-

pervised learning (Section 4.1) and reinforcement learning

(Section 4.2) using the training videos with the purpose of

learning to track general objects. In supervised learning, the

proposed network is trained to predict a proper action to

a given state. In reinforcement learning, the proposed net-

work is updated by performing tracking simulation on the
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training sequence and utilizing action dynamics. After pre-

training ADNet, online adaptation (Section 4.3) is applied

to the network to accommodate the appearance changes or

deformation of the target during tracking test sequences. In

Section 4.4, the implementation details for training ADNet

are described.

4.1. Training ADNet with Supervised Learning

In the supervised learning stage, the network parame-

ters WSL, {w1, ...,w7}, are trained. We first need to gen-

erate the training samples to train ADNet (WSL). The train-

ing samples consist of image patches {pj}, action labels

{o
(act)
j }, class labels {o

(cls)
j }. In this stage, the action dy-

namics is not considered and we set the elements of the

action dynamics vector dj to zero. The training datasets

provide video frames and the ground truth patch position

and size. A sample patch pj is obtained by adding Gaussian

noise to the ground truth and the corresponding action label

o
(act)
j is assigned by,

o
(act)
j = argmax

a
IoU(f̄(pj , a), G), (4)

where G is the ground truth patch and f̄(p, a) denotes the

moved patch from p by the action a. The class label o
(cls)
j

corresponding to pj is defined as the following,

o
(cls)
j =

{

1, if IoU(pj , G) > 0.7

0, otherwise.
(5)

A training batch has a set of randomly selected training

samples {(pj , o
(act)
j , o

(cls)
j )}mj=1. ADNet (WSL) is trained

by minimizing the multi-task loss function by stochastic

gradient descent. The multi-task loss function is defined by

minimizing the loss LSL as follows,

LSL =
1

m

m
∑

j=1

L(oj
(act), ôj

(act))+
1

m

m
∑

i=j

L(oj
(cls), ôj

(cls)),

(6)

wherem denotes the batch size,L denotes the cross-entropy

loss, and ôj
(act) and ôj

(cls) denotes the predicted action and

class by ADNet, respectively.

4.2. Training ADNet with Reinforcement Learning

In the reinforcement learning stage, network parameters

WRL, ({w1, ...,w6}), except fc7 layer are trained. Training

ADNet with RL in this section aims to improve the network

by policy gradient approach [38]. The initial RL network

WRL has the same parameters of the network trained by SL

(WSL). The action dynamics dt is updated in every iteration

by accumulating the recent k actions and shifting them in

first-come-first-out strategy. Since the purpose of RL is to

learn the state-action policy, we ignore the confidence layer

fc7, which is needed in tracking phase.

Frame #160 Frame #190 Frame #220

Reward: +1
Reward: -1

Figure 4: Illustration of the tracking simulation in semi-

supervised case on Walking2 sequence. Red boxes and blue

boxes denote the ground truths and the predicted target’s po-

sitions respectively. In this example, only the frames #160,

#190, and #220 are annotated. Through the sequential ac-

tions, the agent at frame #190 receives +1 reward and −1
at frame #220. Therefore, the tracking scores from frame

#161 to #190 will be +1 and -1 between #191 and #220.

The detail algorithm to train ADNet with RL is described

in the supplementary material. During the training itera-

tions, we first randomly pick a piece of training sequence

{Fl}
L
l=1 and the ground truths {Gl}

L
l=1. We then perform

the reinforcement learning via tracking simulation with the

training image sequences annotated by ground truth. A

tracking simulation can generate a set of sequential states

{st,l}, the corresponding actions {at,l}, and the rewards

{r(st,l)} for the time steps t = 1, ..., Tl and frame indices

l = 1, ...,L. The action at,l for the state st,l is assigned by,

at,l = argmax
a

p(a|st,l;WRL), (7)

where p(at,l|st,l) denotes the conditional action probability.

When the tracking simulation is done, tracking scores {zt,l}
are computed with the ground truths {Gl}. The score in the

tracking simulation zt,l = r(sTl,l) is the reward at the ter-

minal state, which obtains +1 for tracking success and −1
for failure at frame l, which is defined as Eq. (3). By uti-

lizing the tracking scores, the network parameters WRL are

updated by stochastic gradient ascent [38] to maximize the

expected tracking scores as follows,

∆WRL ∝
L
∑

l

Tl
∑

t

∂ log p(at,l|st,l;WRL)

∂WRL

zt,l. (8)

Our framework can train ADNet even if the ground

truths {Gl} are partially given, which means the semi-

supervised setting as shown in Figure 4. The supervised

learning framework cannot learn the information of the un-

labeled frames, however, the reinforcement learning can uti-

lize the unlabeled frames in semi-supervised manner. In or-

der to train ADNet in RL, the tracking scores {zt,l} should

be determined, however, the tracking scores in the unlabeled

sequences cannot be immediately determined. Instead, we

assign the tracking scores to the reward obtained from the

result of tracking simulation. In other works, if the result of

tracking simulation during the unlabeled sequences is eval-

uated as success at the labeled frame, the tracking scores

2715



for the unlabeled frames are given by zt,l = +1. If it is not

successful, zt,l is assigned by -1, as shown in Figure 4.

4.3. Online Adaptation in Tracking

The proposed network is updated in online manner dur-

ing tracking. This online adaptation can make the track-

ing algorithm more robust against the appearance changes

or deformation. When updating ADNet, we fix the con-

volutional filters {w1,w2,w3} and fine-tune the fully-

connected layers {w4, ...,w7} because the convolutional

layers would have generic tracking information whereas

the fully-connected layers would have the video-specific

knowledge. The detailed procedure of the proposed track-

ing and online adaptation scheme is described in the supple-

mentary material. The tracking is performed by deciding se-

quential actions with the state-action probability p(a|s;W ).
We adopt the online update adaptation of [24]. The online

adaptation is done by fine-tuning of ADNet with a super-

vised learning using the temporal training samples gener-

ated during the tracking process. For the supervised learn-

ing, training samples with labels are required. For the la-

beling, we have to determine the ground truth. The tracked

patch position determined by the network is used for the

temporal ground truth. As similar to SL (Section 4.1), the

training sample set S for online adaptation consists of image

patches {pi} sampled randomly around the tracked patch

position and the corresponding action labels {oacti } and

class labels {oclsi }. The labels are obtained via Eq. (4) and

Eq. (5). At the first frame, the initial samples Sinit are gen-

erated using the initial target position, and ADNet is fine-

tuned to fit the given target. At frame l(≥ 2), the training

samples Sl are generated using the tracked patch position

bTl,l if the confidence score c(st,l) of the estimated target

is above 0.5. The confidence score c(st,l) of the state st,l
is defined as the target probability p(target|st,l;W ) of the

confidence layer (fc7). Online adaptation is conducted for

every I frames using the training samples {Sk}
l
k=l−J+1,

which means the online adaptation uses the training sam-

ples generated from the past J frames. When the score ct,l
is below −0.5, which means the tracker miss the target, then

the re-detection is conducted to capture the missed target.

The target position candidates {b̃i}
Ndet

i=1 are generated around

the current target position with random Gaussian noise. The

re-detected target position b∗ is selected by

b∗ = argmax
b̃i

c(b̃i), (9)

and the state sTl,l is assigned by the target position b∗ and

the action dynamics vector dTl,l.

4.4. Implementation Details

Pretraining ADNet. In each frame, we generated the train-

ing samples by adding Gaussian noise, whose mean is zero

and covariance matrix is diag((0.3w)2, (0.3h)2, (0.1w)2,

(0.1h)2)), to the ground truth position G(= [x, y, w, h]).
When pretraining ADNet, we draw 250 samples in each

frame. We set the learning rate to 0.0001 for convolutional

layers (fc1-3) and 0.001 for fully-connected layers (fc4-

7) [24], momentum to 0.9, weight decay to 0.0005, and

mini-batch size to 128. For pretraining ADNet with K train-

ing videos, the number of training iteration is set to 300 for

each video. In each iteration of the reinforcement learning,

we randomly select the sequence of length L(= 10) for the

tracking simulation.

Online adaptation during tracking. For online adapta-

tion, we only train the fully-connected layers (fc4-7) with

the learning rate 0.001. We fine-tune ADNet with TI(=
300) iterations at the first frame and TO(= 30) iterations

for the online adaptations. The online training is conducted

for every I(= 10) frames and the training data are sampled

from the past J (= 20) frames. For the re-detection, we

draw Ndet(= 256) target position candidates. In the online

adaptation, NI(= 3000) samples are generated in the first

frame, and NO(= 250) samples are generated in the frame

whose confidence is above 0.5 during tracking. In addition,

to reduce the computation in actual tracking, we can apply

the fast version of ADNet using a small number of sam-

ples in online adaptation, referred to as “ADNet-fast”. In

ADNet-fast, we set NI to 300, NO to 50, I to 30, and Ndet

to 64. Tracking with ADNet-fast endures 3% performance

degradation but achieves a real time speed around 4 times

faster than the standard version of ADNet.

5. Experiments

We evaluated our method on the popular visual tracking

benchmarks, Object Tracking Benchmark (OTB) [39, 40],

comparing with existing trackers. Also, we validated the

effectiveness of ADNet by demonstrating various self-

comparisons. The experiments were conducted on the fol-

lowing specifications: i7-4790K CPU, 32 GB RAM, and

GTX TITAN X GPU using MATLAB2016b and MatCon-

vNet toolbox [33]. In our settings, ADNet and ADNet-fast

run at 3 fps and 15 fps on the GPU, respectively. The pro-

gram and benchmark results were uploaded online1.

We evaluated our method on two OTB datasets: OTB-

50 [39], which has 50 video sequences, and OTB-100 [40],

which has 100 video sequences including OTB-50. In

order to pre-train ADNet, we used 360 training videos

from VOT2013 [19], VOT2014 [20], VOT2015 [18], and

ALOV300 [29], in which videos overlapping with OTB-

50 and OTB-100 were excluded. The tracking performance

was measured by conducting a one-pass evaluation (OPE)

based on two metrics: center location error and overlap ra-

tio [39]. The center location error measures the distance

1https://sites.google.com/view/cvpr2017-adnet
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(a) Previous frame (b) Tracking-by-
Detection method 

(c) Our method

Figure 5: Searching strategy comparison of the search-

ing strategy between the existing tracking-by-detection ap-

proach [24] (second column) and the proposed method

(third column) on the Deer and Jogging-1 sequences. De-

tail explanation is in Section. 5.1

Figure 6: Self-comparison results of experiments on OTB-

100. The scores in the legend indicate the mean precisions

when the location error threshold is 20 pixel for the preci-

sion plots and area-under-curve (AUC) for the success plots.

between the center of the tracked frame and the ground

truth and the bounding box overlap ratio measures the

Intersection-over-Union (IOU) ratio between the tracked

bounding box and the ground truth.

5.1. Analysis

Self-comparison. To verify the effectiveness of the com-

ponents of ADNet, we conducted four variants of ADNet

and evaluated them using OTB-100. We first conducted the

baseline ‘’‘ADNet-init”, which is not pre-trained and sim-

ply uses the initial parameters. In ADNet-init, the param-

eters of convolutional networks (conv1-3) are initialized

with the VGG-M [4] model, and the fully-connected layers

(fc4-7) are initialized with random noises. “ADNet+SL” is

the pre-trained models with supervised learning using fully

labeled frames of the training sequences. “ADNet+SS” is

trained using partially labeled data in the semi-supervised

(SS) settings. In the training of ADNet+SS, the ground truth

annotation is provided only every 10 frames. Then we con-

ducted “ADNet+SL+RL” and “ADNet+SS+RL” by training

ADNet+SL and ADNet+SS using reinforcement learning

(RL), respectively. ADNet+SL+RL is the final version of

the proposed method. The precision and success rate of the

self-comparisons are illustrated in Figure 6. By conducting

(a) OTB-50

(b) OTB-100

Figure 7: Precision and success plots on OTB-50 [39] and

OTB-100 [40]. Only the top 10 trackers are presented.

Table 1: Summary of experiments on OTB-100.

Algorithm Prec.(20px) IOU(AUC) FPS GPU

ADNet 88.0% 0.646 2.9 O

ADNet-fast 85.1% 0.635 15.0 O

N
o

n
re

al
-t

im
e MDNet [24] 90.9% 0.678 < 1 O

C-COT [9] 90.3% 0.673 < 1 O

DeepSRDCF [8] 85.1% 0.635 < 1 O

HDT [25] 84.8% 0.564 5.8 O

MUSTer [15] 76.7% 0.528 3.9 X

R
ea

l-
ti

m
e

MEEM [42] 77.1% 0.528 19.5 X

SCT [5] 76.8% 0.533 40.0 X

KCF [13] 69.7% 0.479 223 X

DSST [7] 69.3% 0.520 25.4 X

GOTURN [12] 56.5% 0.425 125 O

SL, ADNet+SL and ADNet+SS achieved 3.6% and 2.6%
improvement in precision performance improvement, re-

spectively, compared to ADNet-init. In the semi-supervised

case, the precision is 1.0% lower than that in the super-

vised case because of the lack of ground truth annotations.

When conducting RL, ADNet+SL+RL and ADNet+SS+RL

gained 1.9% and 1.0% additional improvement in precision

performance to ADNet+SL and ADNet+SS, respectively.

The results show that the RL can improve performance not

only the semi-supervised case but also the supervised case.

Analysis on the actions. In the experiment, the ratio of the

frames using re-detection to the whole frames was around

9%, and the ratio of the frames requiring more than five

actions to capture the target to the whole frames was only

around 4%, that is, most of the frames require fewer than

five actions to pursue the target in each frame. Figure 5

illustrates the efficiency of the proposed method pursuing

the target by sequential actions, compared to the existing

tracker based on tracking-by-detection strategy [24]. In Fig-
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Figure 8: Examples of sequential actions selected by ADNet on BlurCar3, Bolt, Football1, and Tiger2 sequences. The state

transitions in the proposed tracking algorithm are presented with the image patches and the corresponding actions.

#10 #70

#10 #120

Figure 9: Failure cases of the proposed method on Ironman

and Diving sequences. Blue and red bounding boxes indi-

cate the ground truths and the tracking results of ADNet,

respectively.

ure 5 (b), the green, red, and blue boxes denote the previous

target position, the current target position, and the gener-

ated target candidates respectively. Figure 5 (c) shows the

tracking process of ADNet by selecting sequential actions.

The average number of searching steps including the re-

quired actions and the candidates by re-detection is 28.26
per frame, which is much smaller than that of state-of-the-

art trackers such as MDNet [24](= 256 per frame).

5.2. Stateoftheart Comparison

We compared ADNet in a comprehensive comparison

with 13 state-of-the-art trackers including MDNet [24], C-

COT [9], GOTURN2 [12], HDT [25], DeepSRDCF [8],

SINT [31], FCNT [34], SCT [5], MUSTer [15], CNN-

SVM [14], MEEM [42], DSST [7], and KCF [13]. Figure 7

shows the plots of precision and success rate based on cen-

ter location error and overlap ratio respectively and Table 1

summarizes the comparison of tracking performance with

computational speed (fps). The proposed method shows

comparable performance with the state-of-the-art trackers,

MDNet [24] and C-COT [9] in both precision and success

rate. The proposed method is much efficient in computation,

where ADNet is about three times faster than MDNet and

C-COT. ADNet-fast, the fast version of ADNet, has a 3%

2We evaluated the GOTURN [12] on the OTB dataset using the author’s

code.

performance degradation but runs in real-time (15 fps) and

shows performance comparable with those of other CNN-

based trackers such as DeepSRDCF [8] and HDT [25]. As

shown in Table. 1, ADNet-fast achieved the best perfor-

mance among the real-time tracking algorithms. Figure 8

illustrates examples of the sequential actions selected by

ADNet. The bounding box flow from the initial position

(blue) to the captured target position (red) is shown in the

left-most columns and the sequential transitions of the state

are represented by the image patches and the selected ac-

tions. Figure 9 presents a few failure cases of the proposed

method. ADnet failed to follow the abrupt movement of the

target in Ironman sequence, and the proposed actions could

not adapt to the dramatic aspect ratio change in Diving se-

quence.

6. Conclusion

In this paper, we have proposed a novel tracker con-

trolled by action-decision network (ADNet), which pursues

the target object by sequential actions iteratively. To the

best of our knowledge, it is the first attempt to adopt the

tracking strategy controlled by pursuing actions trained by

deep reinforcement learning. Action-based tracking makes

a significant contribution to the reduction of computation

complexity in tracking. In addition, reinforcement learn-

ing makes the use of partially labeled data possible, which

could greatly benefit actual applications. According to the

evaluation results, the proposed tracker achieves a state-of-

the-art performance in 3 fps, which is three times faster

than the existing deep network-based trackers adopting a

tracking-by-detection strategy. Furthermore, the fast ver-

sion of the proposed tracker achieves a real-time speed (15

fps) with an accuracy that outperforms state-of-the-art real-

time trackers.
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