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Abstract

For survival, a living agent (e.g., human in Fig. 1(a))

must have the ability to assess risk (1) by temporally antic-

ipating accidents before they occur (Fig. 1(b)), and (2) by

spatially localizing risky regions (Fig. 1(c)) in the environ-

ment to move away from threats. In this paper, we take an

agent-centric approach to study the accident anticipation

and risky region localization tasks. We propose a novel soft-

attention Recurrent Neural Network (RNN) which explicitly

models both spatial and appearance-wise non-linear inter-

action between the agent triggering the event and another

agent or static-region involved. In order to test our pro-

posed method, we introduce the Epic Fail (EF) dataset con-

sisting of 3000 viral videos capturing various accidents.

In the experiments, we evaluate the risk assessment accu-

racy both in the temporal domain (accident anticipation)

and spatial domain (risky region localization) on our EF

dataset and the Street Accident (SA) dataset. Our method

consistently outperforms other baselines on both datasets.

1. Introduction

A very important goal for living agents in the world is

survival. In order to survive, they naturally have the ability

to assess risk. For instance, humans exhibit emotional re-

sponses while taking or observing risky actions [23], in an

unconscious process that appears to happen without sophis-

ticated reasoning [20]. Furthermore, humans have the abil-

ity to turn their attention on the risky areas of the environ-

ment more often than others [22], as risk does not distribute

uniformly across the environment. Such risk localization is

very important for the agent to move away to safety. On the

other hand, humans also have the ability to assess longer-

term risk by imagining future situations. In this case, high-

level reasoning techniques (imagination, simulation) can be

used to assess risk in a longer term. Such anticipation ability

is also critical for the agent to react before accident occurs.

We are inspired by these key capabilities of human intelli-

gence and perception to study the problem of risk assesment

from a computer vision perspective.
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Figure 1. Illustration of risk assessment. (a) we show an image

overlaid with a human agent from different frames and label the

risky region before accident occurs in an orange box. (b) risk map

for environment and accident anticipation probability through time

t. (c) risky region (orange box) at the instant when accident occurs.

Towards this goal, we introduce the problem of risk as-

sessment from an agent-centric point of view. That is, given

the observed past and current behavior of each agent in a

video, we tackle the problem by answering two key ques-

tions centered around each agent. First, will the agent en-

counter an accident in the near future? This corresponds

to the task of accident anticipation, where we would like

to predict an accident before it occurs. Second, in which re-

gion in the environment might the accident take place? This

corresponds to the task of risky region localization, where

we would like to spatially localize the regions in the scene

that might be involved in a future accident.

We face two key but difficult challenges in this problem.

First, note that similar visual appearances will frequently

correspond to vastly different levels of risk, as risk is de-

pendent on context and interactions between the agent and

the environment. Therefore, we must explicitly consider ap-

pearances and spatial relations between agents and regions

in the scene. A second challenge is that of capturing long

term temporal dependencies and causalities that underlie

risk events. This could be tackled by explicitly forecasting

relationships between the agent and the environment.

Some early attempts focus on assessing risk related to the

environment [28] or correlating the statistical occurrance of
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activities to static scenes [2]. Instead, we aim at assess-

ing risk explicitly triggered by the actions of an agent and

its interaction with the environment, by anticipating acci-

dents and localizing risky regions in the scene. The task

of accident anticipation is related to early activity recog-

nition [8, 25], and event anticipation [10, 15]. However,

these are primarily categorization approaches that discrimi-

nate actions into separate semantic classes. In our case, we

are not as interested in the semantic categories of the ac-

tions, but in reasoning about the probability of accident in

the near future. Risky region localization has less precur-

sors in the vision literature. The closest is work on human-

object interaction from an action recognition perspective,

but these methods usually model object categories explic-

itly and their correlation to action classes [33, 15].

We introduce a novel model for agent-centric risk assess-

ment. Our model encodes the behavior of an agent into

a distributed representation using a Recurrent Neural Net-

work (RNN). Given the agent representation, we introduce

a novel dynamic parameter predictor inspired by Noh et

al. [21] to measure the riskiness of each region with respect

to the agent. The parameters efficiently consider relative

spatial relations and coupled appearances between the agent

and the region. Next, our model takes the agent representa-

tion and appearance of the risky regions as the input of an-

other temporal-level RNN for accident anticipation. More-

over, the hidden representation of the temporal-level RNN

is used to imagine and simulate the future trajectory of the

agent. The future trajectory can be used as new inputs to

our model so that we can assess the risk in long-term.

Our main contributions are: (i) We utilize the dynamic

parameter layer to efficiently model the relative spatial re-

lation and coupled appearance between agent and region.

(ii) We use the generative property of RNN to self-train it

to encode the behavior of the agent as well as generate (i.e.,

imagine) its future trajectory. (iii) The imagined future tra-

jectory becomes new inputs to our model to assess risk in

a longer term. (iv) To the best of our knowledge, the new

Epic Fail (EF) video dataset is the first agent-centric risk

assessment dataset for computer vision research.

2. Related Work
We give an overview of related work on risk assessment

from visual observations, early event recognition and antic-

ipation, as well as parameter prediction for deep networks.

Risk assessment given visual observation has not been

widely explored. Valenzuela et al. [28] propose to assess

landslide risk from topographic images. Since landslide

is caused by intense rain in localities where there was un-

planned occupation of slopes of hills and mountains, detect-

ing these slopes in topographic images helps us to predict

the risk of landslide. Arietta et al. [2] propose to use street-

level images to predict the crime rate (risk of crime) at each

geographic location. Koshla et al. [11] predict crime rates

in an area without real-time criminal activity information,

by correlating the appearance of a scene to properties such

distance to public places, businesses, etc. However, these

approaches assess risk caused either by the environment or

by priors on social activities, whereas we focus on assessing

risk explicitly triggered by the observed actions of an agent

and its interactions with the environment.

Risk assessment is related to predicting the possibility of

catastrophic events occurring in the future. In early activ-

ity recognition, the focus is to predict activities before they

are completed, such as recognizing a smile as early as the

corners of the mouth curve up. For example, Ryoo [25] in-

troduces a probability model for early activity prediction;

Hoai et al. [8] propose a max-margin model to handle par-

tial observation; and Lan et al. [16] propose the hierarchical

movemes representation for predicting future activities. In

activity anticipation, the goal is to predict events even be-

fore they occur. For instance, Jain et al. [10] propose to fuse

multiple sensors to anticipate the actions of a driver; Chan

et al. [4] introduce a dynamic soft-attention-based RNN to

anticipate accidents on the road from dashcam videos; and

Vondrick et al. [29] propose to learn temporal knowledge

from unlabeled videos for anticipation. However, these fo-

cus on activity categories and do not study risk assessment

of objects and regions in the video.

Anticipation has been applied in tasks other than event

anticipation. Kitani et al. [13] propose to forecast human

trajectory by surrounding physical environment (e.g., road,

pavement, etc.) and show that the forecasted trajectory can

be used to improve object tracking accuracy. Walker et

al. [30] propose to forecast dense pixel trajectories from

a static image. Yuen and Torralba [34] propose to predict

motion from still images. Julian et al. [31] propose a novel

visual appearance prediction method based on mid-level vi-

sual elements with temporal modeling methods. Event an-

ticipation is also popular in the robotic community. Wang et

al. [32] propose a latent variable model for inferring human

intentions. Koppula and Saxena [15] address the problem

by observing RGB-D data, and apply their method to assist

humans in daily tasks. Finally, human activity anticipation

can also improve human-robot collaboration [14, 18].

Parameter prediction in deep networks is a relatively new

idea. Ba et al. [3] propose a zero-shot classifier for unseen

classes by predicting the parameters of a classifier using text

information. Noh et al. [21] propose to dynamically predict

the parameters for image question answering depending on

the given textual question. Inspired by [21], we introduce

a novel dynamic parameter predictor layer for estimating

spatial riskiness depending on the agent behavior.

3. Agent-centric Risk Assessment
We now define the task of agent-centric risk assessment

and present our model. Given a video frame at time t, we

observe information about the agent and multiple regions.
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Figure 2. Illustration of our method. Panel (a) shows the pre-process to obtain appearance and location information for both agent (a, p)
and regions (R,L). Panel (b) shows all the components (Sec.3,2, 3.3, and 3.4) in our model to predict riskiness of all regions S and

anticipated accident probability y. Acc. denotes accident. Panel (c) illustrates how the imagined agent location p̂t+K triggers our model

to reassess risk (S, y). In panel (b), a diamond shape node denotes a switch. It is used to control our model to imagine or take observation.

In panel (c), the transformation block corresponds to Eq. 8. All dash arrows represent information across frames. Note that the anticipated

accident probability increases from 0.5 at frame t to 0.7 at frame t+1.

We assume we have access to the appearance vector at and

bounding box location pt = [xt, yt, wt, ht] of the agent. We

also capture information about a set of N candidate risky

regions, Rt = {rit}
N
i=0 and Lt = {lit}

N
i=0, where rit is the

appearance and lit the location of region i. When we ob-

serve a video sequence from t = 0 to the current frame t̂,

our accumulated agent information is {(at, pt)}
t̂
t=0 and our

accumulated region information is {(Rt, Lt)}
t̂
t=0. The goal

is to predict two outputs corresponding to the tasks of ac-

cident anticipation and risky region localization. The first

is the accident anticipation probability yt̂ ∈ [0, 1] at current

frame t̂. The second is the riskiness score of all candidate

regions at current frame t̂, St̂ = {si
t̂
}Ni=0, where si

t̂
∈ [0, 1]

is the risk probability for the i-th region. Next, we give an

overview of how our model infers yt̂ and St̂.

3.1. Model Overview
Our model consists of three main components. The first

is the agent-region interaction component. We propose to

dynamically predict parameters to infer riskiness of a region

s depending on the behavior of the agent and relative loca-

tion of the region concerning the agent’s location. The sec-

ond is the Holistic Accident Anticipation Module incorpo-

rating information from both agent and risky regions to infer

the accident anticipation probability. Finally, the recurrent

component with two Recurrent Neural Networks (RNNs).

One RNN aggregates behavior of the agent, while the other

aggregates the holistic accident anticipation information. In

the following, we describe each component in details.

3.2. AgentRegion Interaction Module
The goal of this module is to infer the risk probability

Si for each region in a frame. Consider for example the

unicycler agent in frame t of Fig. 2(a). Intuitively, the risk
of region i should be dependent on: the appearance of the
region ri to verify if the objects in a region are risky, as a
region covering the stairs; the appearance of the agent a, as
the stairs might be riskier for a unicycler than for a pedes-
trian; and spatial relationship between the agent and the re-
gion ui, as stairs close to the unicycler indicate more risk In
this way, we write risk probablity si as:

s
i = g(wT

r · r
i) ∈ [0, 1] , (1)

where g is a sigmoid to ensure valid probability estimates.
Note that this indicates that region riskiness only depends
on region appearance ri. To encode dependencies on a and
ui, we propose to dynamically predict the parameter wr:

wr(a, u
i) = σ

(

Wf ·
[

a σ
(

Wu · ui
)]T

)

, (2)

where σ is a rectified linear unit (ReLU), and Wf ,Wu are

the parameters of two fully connected layers. We encode the

agent-region spatial relationship ui with a 9-dimensional

vector that we compute from the agent bounding box p and

region bounding box li. Fig. 3 illustrates the components of

ui which concatenates: the normalized relative position of

region center (∆xc,∆yc), top-left corner (∆xmin,∆ymin)
and bottom-right corner (∆xmax,∆ymax); the region rela-

tive width ∆w and height ∆y; and Intersection over Union

(IoU) of the agent box and region boxes.

3.3. Holistic Accident Anticipation Module
The goal of this module is to produce an accident antic-

ipation score y for the current frame. Intuitively, the proba-
bilty of accident y depends on: the appearance of the agent
a, as some agents might be more prone to accidents than
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Figure 3. Relative configuration of all regions with respect to the

agent. Risk assessment of all regions are illustrated with respect to

the agent (green box). In our agent-centric perspective, the orange

box indicates a risky region and the blue boxes indicate non-risky

regions. We normalize the horizontal and vertical axes separately

such that the width and height of the agent is unit one. All 9 cues

(∆xc,∆yc,∆xmin,∆ymin,∆xmax,∆xmax,∆w,∆h, IoU) in

the configuration are visualized.

others; and the appearance R and risk level S of all regions
in the scene, as some specific types of regions might lead to
accidents more frequently than others. We encapsulate this
intuition by first building a holistic representation q, which
we obtain by concatenating the agent appearance a with the
consolidated region information r̄:

q =
[

a r̄
]T

. (3)

We consolidate the region information by weigthting each
region according to its inferred risk probability:

r̄ = φ(S,R) =
∑

is
i
· ri. (4)

Note that r̄ has the same dimension even when the number
of regions varies at each frame. The holistic representation
q is used to infer accident anticipation probability y,

y = softmax(Wy · q) ∈ [0, 1]2, (5)

where Wy is the model parameter, and y[0], y[1] denote the

probability of non-accident and accident, respectively.

3.4. Recurrent Temporal Memory for Anticipation
The model we described so far operates on a single frame

and does not aggregate the knowledge of the sequence of

past observations. Intuitively, incorporating this sequence

should help the model understand how the agent and re-

gions move and how their relation with each other evolve in

time. To model these sequences, we introduce two RNNs to

operate as memory components in our framework.
First, we aggregate the agent appearance and behav-

ior information in the Agent-RNN (RNNA), which takes

{(at, pt)}
t̂
t=0 as inputs and produces an encoding in its hid-

den vector αt̂. We propagate this information by incorpo-
rating α in Eq. 2 and Eq. 3, instead of the appearance infor-
mation a. So, Eq. 2 and Eq. 3 can be rewritten as follows.

wr(α, u
i) = σ

(

Wf ·
[

α σ
(

Wu · ui
)]T

)

, (6)

q =
[

α r̄
]T

. (7)

Second, we aggregate the environment risk information

by modeling the sequence of holistic representations q. We

achieve this by an Accident-Anticipation-RNN (RNNAA),

which takes {qt}
t̂
t=0 as input and produces an encoding in

its hidden vector ot̂. We propagate this information by in-

corporating o in Eq. 5, instead of the direct use of q.

As a result, our model can predict the accident probabil-

ity yt̂ and region risk scores St̂ as a function of the observa-

tions from t = 0 to t̂. In practice, we use LSTM cells [9] to

better handle temporal dependencies.

3.5. Imagining Future Risk

One interesting capability for humans is to assess risk by

imagining future situations. In the case of Fig. 2, we can

imagine the agent moving towards the stairs, which may re-

sult in an accident in the near future. We are interested in

encoding such imagination capability to our model to better

anticipate accidents and predict region risk. With the for-

mulation so far, we have a model that can predict the prob-

ability of an accident happening in the near feature tf > t̂

from past observations t = 0 to t̂. We include a mecha-

nism in our model that simulates or imagines the future tra-

jectory and location of the agent K frames into the future,

which we denote as p̂t̂+K . The idea is that once the model

predicts the location of the agent in the future, we can ulti-

mately produce new risk scores for all regions ŝ and a new

accident anticipation probability ŷ.

In practice, we use the holistic representation ot̂ to infer a
4-dimensional transformation c = [cx, cy, cw, ch] that con-
verts the agent location pt̂ to the imagined location p̂t̂+K :

c = Wc · ot̂, (8)

p̂t̂+K =
[

cx · wt̂ + xt̂ cy · ht̂ + yt̂ ecw · wt̂ ech · ht̂

]

.

(9)

We train the parameters Wc with ground truth transforma-

tions c∗ that map ground truth locations pt̂ and pt̂+K .

Once the model imagines the location of the agent p̂t̂+K ,

we can update the agent-region relationships to ût̂+K by re-

computing these features using the imagined location. Sim-

ilarly, we can produce new ŵr, Ŝt̂+K , ˆ̄rt̂+K , q̂t̂+K , ôt̂+K

and finally a new ŷt̂+K . Note that ŷt̂+K corresponds to the

accident anticipation probability that the model produces

from the observations at t = 0 . . . t̂ and one step of imagin-

ing the future position of the agent at time t̂ +K. In other

words, by using this imagination mechanism, the model is

able to assess risk without observing any new information.

More importantly, the same process can be applied multi-

ple times to imagine further into the future. That is, we

can obtain ŷt̂+nK by recursively estimating p̂t̂+nK from

p̂t̂+(n−1)K and repeating the process outlined above.

Final prediction. Finally, we estimate risk (yF
t̂
, SF

t̂
) by fus-
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