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Abstract

“If I provide you a face image of mine (without telling

you the actual age when I took the picture) and a large

amount of face images that I crawled (containing labeled

faces of different ages but not necessarily paired), can you

show me what I would look like when I am 80 or what I

was like when I was 5?” The answer is probably a “No.”

Most existing face aging works attempt to learn the trans-

formation between age groups and thus would require the

paired samples as well as the labeled query image. In this

paper, we look at the problem from a generative modeling

perspective such that no paired samples is required. In ad-

dition, given an unlabeled image, the generative model can

directly produce the image with desired age attribute. We

propose a conditional adversarial autoencoder (CAAE) that

learns a face manifold, traversing on which smooth age pro-

gression and regression can be realized simultaneously. In

CAAE, the face is first mapped to a latent vector through

a convolutional encoder, and then the vector is projected

to the face manifold conditional on age through a decon-

volutional generator. The latent vector preserves personal-

ized face features (i.e., personality) and the age condition

controls progression vs. regression. Two adversarial net-

works are imposed on the encoder and generator, respec-

tively, forcing to generate more photo-realistic faces. Ex-

perimental results demonstrate the appealing performance

and flexibility of the proposed framework by comparing with

the state-of-the-art and ground truth.

1. Introduction

Face age progression (i.e., prediction of future looks) and

regression (i.e., estimation of previous looks), also referred

to as face aging and rejuvenation, aims to render face im-

ages with or without the “aging” effect but still preserve

personalized features of the face (i.e., personality). It has

tremendous impact to a wide-range of applications, e.g.,

face prediction of wanted/missing person, age-invariant ver-

∗with equal contribution.

�
Query

Return

Progression/

Regression

Figure 1. We assume the face images lie on a manifold (M) , and

images are clustered according to their ages and personality by

a different direction. Given a query image, it will first projected

to the manifold, and then after the smooth transformation on the

manifold, the corresponding images will be projected back with

aging patterns.

ification, entertainment, etc. The area has been attracting

a lot of research interests despite the extreme challenge in

the problem itself. Most of the challenges come from the

rigid requirement to the training and testing datasets, as well

as the large variation presented in the face image in terms

of expression, pose, resolution, illumination, and occlusion.

The rigid requirement on the dataset refers to the fact that

most existing works require the availability of paired sam-

ples, i.e., face images of the same person at different ages,

and some even require paired samples over a long range

of age span, which is very difficult to collect. For exam-

ple, the largest aging dataset “Morph” [12] only captured

images with an average time span of 164 days for each in-

dividual. In addition, existing works also require the query

image to be labeled with the true age, which can be incon-

venient from time to time. Given the training data, existing

works normally divide them into different age groups and

learn a transformation between the groups, therefore, the

query image has to be labeled in order to correctly position

the image.

Although age progression and regression are equally im-
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portant, most existing works focus on age progression. Very

few works can achieve good performance of face rejuvenat-

ing, especially for rendering baby face from an adult be-

cause they are mainly surface-based modeling which sim-

ply remove the texture from a given image [18, 15, 7]. On

the other hand, researchers have made great progress on

age progression. For example, the physical model-based

methods [28, 27, 15, 22] parametrically model biological

facial change with age, e.g., muscle, wrinkle, skin, etc.

However, they suffer from complex modeling, the require-

ment of sufficient dataset to cover long time span, and

are computationally expensive; the prototype-based meth-

ods [29, 12, 25, 30] tend to divide training data into differ-

ent age groups and learn a transformation between groups.

However, some can preserve personality but induce severe

ghosting artifacts, others smooth out the ghosting effect

but lose personality, while most relaxed the requirement of

paired images over long time span, and the aging pattern can

be learned between two adjacent age groups. Nonetheless,

they still need paired samples over short time span.

In this paper, we investigate the age progres-

sion/regression problem from the perspective of generative

modeling. The rapid development of generative adversarial

networks (GANs) has shown impressive results in face im-

age generation [19, 32, 21, 17]. In this paper, we assume

that the face images lie on a high-dimensional manifold as

shown in Fig.1. Given a query face, we could find the corre-

sponding point (face) on the manifold. Stepping along the

direction of age changing, we will obtain the face images

of different ages while preserving personality. We propose

a conditional adversarial autoencoder (CAAE)1 network to

learn the face manifold. By controlling the age attribute, it

will be flexible to achieve age progression and regression at

the same time. Because it is difficult to directly manipulate

on the high-dimensional manifold, the face is first mapped

to a latent vector through a convolutional encoder, and then

the vector is projected to the face manifold conditional on

age through a deconvolutional generator. Two adversarial

networks are imposed on the encoder and generator, respec-

tively, forcing to generate more photo-realistic faces.

The benefit of the proposed CAAE can be summarized

from four aspects. First, the novel network architecture

achieves both age progression and regression while gener-

ating photo-realistic face images. Second, we deviate from

the popular group-based learning, thus not requiring paired

samples in the training data or labeled face in the test data,

making the proposed framework much more flexible and

general. Third, the disentanglement of age and personal-

ity in the latent vector space helps preserving personality

while avoiding the ghosting artifacts. Finally, CAAE is ro-

bust against variations in pose, expression, and occlusion.

1Bitbucket: https://bitbucket.org/aicip/face-aging-caae
Github: https://zzutk.github.io/Face-Aging-CAAE

2. Related Work

2.1. Age Progression and Regression

In recent years, the study on face age progression has

been very popular, with approaches mainly falling into

two categories, physical model-based and prototype-based.

Physical model-based methods model the biological pattern

and physical mechanisms of aging, e.g., the muscles [26],

wrinkle [23, 27], facial structure [22, 15] etc. through ei-

ther parametric or non-parametric learning. However, in

order to better model the subtle aging mechanism, it will

require a large face dataset with long age span (e.g., from 0

to 80 years old) of each individual, which is very difficult

to collect. In addition, physical modeling-based approaches

are computationally expensive.

On the other hand, prototype-based approaches [1, 12]

often divide faces into groups by age, e.g., the average face

of each group, as its prototype. Then, the difference be-

tween prototypes from two age groups is considered the ag-

ing pattern. However, the aged face generated from aver-

aged prototype may lose the personality (e.g., wrinkles). To

preserve the personality, [25] proposed a dictionary learning

based method — age pattern of each age group is learned

into the corresponding sub-dictionary. A given face will be

decomposed into two parts: age pattern and personal pat-

tern. The age pattern was transited to the target age pat-

tern through the sub-dictionaries, and then the aged face

is generated by synthesizing the personal pattern and tar-

get age pattern. However, this approach presents serious

ghosting artifacts. The deep learning-based method [30]

represents the state-of-the-art, where RNN is applied on

the coefficients of eigenfaces for age pattern transition. All

prototype-based approaches perform the group-based learn-

ing which requires the true age of testing faces to localize

the transition state which might not be convenient. In ad-

dition, these approaches only provide age progression from

younger face to older ones. To achieve flexible bidirectional

age changes, it may need to retrain the model inversely.

Face age regression, which predicts the rejuvenating re-

sults, is comparatively more challenging. Most age re-

gression works so far [18, 7] are physical model-based,

where the textures are simply removed based on the learned

transformation over facial surfaces. Therefore, they cannot

achieve photo-realistic results for baby face predictions.

2.2. Generative Adversarial Network

Generating realistically appealing images is still chal-

lenging and has not achieved much success until the rapid

advancement of the generative adversarial network (GAN).

The original GAN work [8] introduced a novel framework

for training generative models. It simultaneously trains two

models: 1) the generative model G captures the distribution

of training samples and learns to generate new samples im-
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itating the training, and 2) the discriminative model D dis-

criminates the generated samples from the training. G and

D compete with each other using a min-max game as Eq. 1,

where z denotes a vector randomly sampled from certain

distribution p(z) (e.g., Gaussian or uniform), and the data

distribution is pdata(x), i.e., the training data x ∼ pdata(x).

min
G

max
D

Ex∼pdata(x)[logD(x)]+

Ez∼p(z)[log(1−D(G(z)))]
(1)

The two parts, G and D, are trained alternatively.

One of the biggest issues of GAN is that the training pro-

cess is unstable, and the generated images are often noisy

and incomprehensible. During the last two years, several

approaches [21, 20, 9, 3, 4, 10, 19] have been proposed to

improve the original GAN from different perspectives. For

example, DCGAN [21] adopted deconvolutional and con-

volutional neural networks to implement G and D, respec-

tively. It also provided empirical instruction on how to build

a stable GAN, e.g., replacing the pooling by strides convo-

lution and using batch normalization. CGAN [20] modi-

fied GAN from unsupervised learning into semi-supervised

learning by feeding the conditional variable (e.g., the class

label) into the data. The low resolution of the generated im-

age is another common drawback of GAN. [4, 10] extended

GAN into sequential or pyramid GANs to handle this prob-

lem, where the image is generated step by step, and each

step utilizes the information from the previous step to fur-

ther improve the image quality. Some GAN-related works

have shown visually impressive results of randomly draw-

ing face images [31, 19, 32, 21, 17]. However, GAN gener-

ates images from random noise, thus the output image can-

not be controlled. This is undesirable in age progression and

regression, where we have to ensure the output face looks

like the same person as queried.

3. Traversing on the Manifold

We assume the face images lie on a high-dimensional

manifold, on which traversing along certain direction could

achieve age progression/regression while preserving the

personality. This assumption will be demonstrated ex-

perimentally in Sec. 4.2. However, modeling the high-

dimensional manifold is complicated, and it is difficult to

directly manipulate (traversing) on the manifold. Therefore,

we will learn a mapping between the manifold and a lower-

dimensional space, referred to as the latent space, which is

easier to manipulate. As illustrated in Fig. 2, faces x1 and

x2 are mapped to the latent space by E (i.e., an encoder),

which extracts the personal features z1 and z2, respectively.

Concatenating with the age labels l1 and l2, two points are

generated in the latent space, namely [z1, l1] and [z2, l2].
Note that the personality z and age l are disentangled in

the latent space, thus we could simply modify age while
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Figure 2. Illustration of traversing on the face manifold M. The

input faces x1 and x2 are encoded to z1 and z2 by an encoder E,

which represents the personality. Concatenated by random age la-

bels l1 and l2, the latent vectors [z1, l1] and [z2, l2] are constructed

as denoted by the rectangular points. The colors indicate corre-

spondence of personality. Arrows and circle points denote the

traversing direction and steps, respectively. Solid arrows direct

traversing along the age axis while preserving the personality. The

dotted arrow performs a traversing across both the age and per-

sonality axes. The traversing in the latent space is mapped to the

face manifold M by a generator G, as illustrated by the points and

arrows with corresponding markers and colors. Each point on M
is a face image, thus achieving age progression and regression.

preserving the personality. Starting from the red rectangu-

lar point [z2, l2] (corresponding to x2) and evenly stepping

bidirectionally along the age axis (as shown by the solid red

arrows), we could obtain a series of new points (red cir-

cle points). Through another mapping G (i.e. a generator),

those points are mapped to the manifold M – generating a

series of face images, which will present the age progres-

sion/regression of x2. By the same token, the green points

and arrows demonstrate the age progressing/regression of

x1 based on the learned manifold and the mappings. If we

move the point along the dotted arrow in the latent space,

both personality and age will be changed as reflected on M.

We will learn the mappings E and G to ensure the generated

faces lie on the manifold, which indicates that the generated

faces are realistic and plausible for a given age.

4. Approach

In this section, we first present the pipeline of the pro-

posed conditional adversarial autoencoder (CAAE) network

(Sec. 4.1) that learns the face manifold (Sec. 4.2). The

CAAE incorporates two discriminator networks, which are

the key to generating more realistic faces. Sections 4.3 and

4.4 demonstrate their effectiveness, respectively. Finally,

Section 4.5 discusses the difference of the proposed CAAE

from other generative models.

4.1. Conditional Adversarial Autoencoder

The detailed structure of the propose CAAE network is

shown in Fig. 3. The input and output face images are

128 × 128 RGB images x ∈ R
128×128×3. A convolutional
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Figure 3. Structure of the proposed CAAE network for age progression/regression. The encoder E maps the input face to a vector z

(personality). Concatenating the label l (age) to z, the new latent vector [z, l] is fed to the generator G. Both the encoder and the generator

are updated based on the L2 loss between the input and output faces. The discriminator Dz imposes the uniform distribution on z, and the

discriminator Dimg forces the output face to be photo-realistic and plausible for a given age label.

neural network is adopted as the encoder. The convolu-

tion of stride 2 is employed instead of pooling (e.g., max

pooling) because strided convolution is fully differentiable

and allows the network to learn its own spacial downsam-

pling [21]. The output of encoder E(x) = z preserves the

high-level personal feature of the input face x. The out-

put face conditioned on certain age can be expressed by

G(z, l) = x̂, where l denotes the one-hot age label. Unlike

existing GAN-related works, we incorporate an encoder to

avoid random sampling of z because we need to generate

a face with specific personality which is incorporated in z.

In addition, two discriminator networks are imposed on E

and G, respectively. The Dz regularizes z to be uniform

distributed, smoothing the age transformation. The Dimg

forces G to generate photo-realistic and plausible faces for

arbitrary z and l. The effectiveness of the two discrimina-

tors will be further discussed in Secs. 4.3 and 4.4, respec-

tively.

4.2. Objective Function

The real face images are supposed to lie on the face man-

ifold M, so the input face image x ∈ M. The encoder E

maps the input face x to a feature vector, i.e., E(x) = z ∈
R

n, where n is the dimension of the face feature. Given

z and conditioned on certain age label l, the generator G

generates the output face x̂ = G(z, l) = G(E(x), l). Our

goal is to ensure the output face x̂ lies on the manifold while

sharing the personality and age with the input face x (during

training). Therefore, the input and output faces are expected

to be similar as expressed in Eq. 2, where L(·, ·) denotes L2

norm.

min
E,G

L (x,G(E(x), l)) (2)

Simultaneously, the uniform distribution is imposed on z

through Dz – the discriminator on z. We denote the distri-

bution of the training data as pdata(x), then the distribution

of z is q(z|x). Assuming p(z) is a prior distribution, and

z∗ ∼ p(z) denotes the random sampling process from p(z).
A min-max objective function can be used to train E and

Dz ,

min
E

max
Dz

Ez∗
∼p(z) [logDz(z

∗)] +

Ex∼pdata(x) [log(1−Dz(E(x)))]
(3)

By the same token, the discriminator on face image, Dimg ,

and G with condition l can be trained by

min
G

max
Dimg

Ex,l∼pdata(x,l) [logDimg(x, l)] +

Ex,l∼pdata(x,l) [log(1−Dimg(G(E(x), l)))]
(4)

Finally the objective function becomes

min
E,G

max
Dz,Dimg

λL (x,G(E(x), l)) + γTV (G(E(x), l))

+Ez∗
∼p(z) [logDz(z

∗)]

+Ex∼pdata(x) [log(1−Dz(E(x)))]

+Ex,l∼pdata(x,l) [logDimg(x, l)]

+Ex,l∼pdata(x,l) [log(1−Dimg(G(E(x), l)))] ,

(5)

where TV (·) denotes the total variation which is effective

in removing the ghosting artifacts. The coefficients λ and γ

balance the smoothness and high resolution.

Note that the age label is resized and concatenated to the

first convolutional layer of Dimg to make it discriminative

on both age and human face. Sequentially updating the net-

work by Eqs. 2, 3, and 4, we could finally learn the manifold

M as illustrated in Fig. 4.
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Figure 4. Illustration of the learned face manifold M. The hor-

izontal axis indicates the traversing of age, and the vertical axis

indicates different personality.

4.3. Discriminator on z

The discriminator on z, denoted by Dz , imposes a prior

distribution (e.g., uniform distribution) on z. Specifically,

Dz aims to discriminate the z generated by encoder E. Si-

multaneously, E will be trained to generate z that could fool

Dz . Such adversarial process forces the distribution of the

generated z to gradually approach the prior. We use uniform

distribution as the prior, forcing z to evenly populate the la-

tent space with no apparent “holes”. As shown in Fig. 5, the

generated z’s (depicted by blue dots in a 2-D space) present

uniform distribution under the regularization of Dz , while

the distribution of z exhibits a “hole” without the applica-

tion of Dz . Exhibition of the “hole” indicates that face im-

ages generated by interpolating between arbitrary z’s may

not lie on the face manifold – generating unrealistic faces.

For example, given two faces x1 and x2 as shown in Fig. 5,

we obtain the corresponding z1 and z2 by E under the con-

ditions with and without Dz , respectively. Interpolating be-

tween z1 and z2 (dotted arrows in Fig. 5), the generated

faces are expected to show realistic and smooth morphing

from x1 to x2 (bottom of Fig. 5). However, the morphing

without Dz actually presents distorted (unrealistic) faces in

the middle (indicated by dashed box), which corresponds to

the interpolated z’s passing through the “hole”.

4.4. Discriminator on Face Images

Inheriting the similar principle of GAN, the discrimina-

tor Dimg on face images forces the generator to yield more

realistic faces. In addition, the age label is imposed on

Dimg to make it discriminative against unnatural faces con-

�૚
�૛

�૚
�૛

With �� Without ��

With ��

Without ��

�૚
�૛

Figure 5. Effect of Dz , which forces z to a uniform distribution.

For simplicity, z is illustrated in a 2-D space. Blue dots indicate

z’s mapped from training faces through the encoder. With Dz ,

the distribution of z will approach uniform. Otherwise, z may

present “holes”. The rectangular points denote the corresponding

z mapped from the input faces x1 and x2, and the dotted arrow in-

dicates the traversing from z1 to z2. The intermediate points along

the traversing are supposed to generate a series of plausible mor-

phing faces from x1 to x2. Without Dz , the learned z presents a

sparse distribution along the path of traversing, causing the gener-

ated face to look unreal. The series of figures at the bottom shows

the traversing with and without Dz .

ditional on age. Although minimizing the distance between

the input and output images as expressed in Eq. 2 forces the

output face to be close to the real ones, Eq. 2 does not en-

sure the framework to generate plausible faces from those

unsampled faces. For example, given a face that is unseen

during training and a random age label, the pixel-wise loss

could only make the framework generate a face close to the

trained ones in a manner of interpolation, causing the gen-

erated face to be very blurred. The Dimg will discriminate

the generated faces from real ones in aspects of reality, age,

resolution, etc. Fig. 6 demonstrates the effect of Dimg .

Comparing the generated faces with and without Dimg ,

it is obvious that Dimg assists the framework to generate

more realistic faces. The outputs without Dimg could also

present aging but the effect is not as obvious as that with

Dimg because Dimg enhances the texture especially for

older faces.

4.5. Differences from Other Generative Networks

In this section, we comment on the similarity and differ-

ence of the proposed CAAE with other generative networks,

including GAN [8], variational autoencoder (VAE) [14],

and adversarial autoencoder (AAE) [19].

VAE vs. GAN: VAE uses a recognition network to

predict the posterior distribution over the latent variables,

while GAN uses an adversarial training procedure to di-

rectly shape the output distribution of the network via

back-propagation [19]. Because VAE follows an encoding-

decoding scheme, we can directly compare the generated
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Figure 6. Effect of Dimg , which forces the generated faces to be

more realistic in aspects of age and resolution. The first column

shows the original faces, and their true ages are marked on the top.

The right four columns are generated faces through the proposed

framework, without (the upper row) or with (the lower row) Dimg .

The generated faces fall in four age groups as indicated at the top

of each column.

images to the inputs, which is not possible when using a

GAN. A downside of VAE is that it uses mean squared er-

ror instead of an adversarial network in image generation,

so it tends to produce more blurry images [16].

AAE vs. GAN and VAE: AAE can be treated as the

combination of GAN and VAE, which maintains the au-

toencoder network like VAE but replaces the KL-divergence

loss with an adversarial network like in GAN. Instead of

generating images from random noise as in GAN, AAE uti-

lizes the encoder part to learn the latent variables approx-

imated on certain prior, making the style of generated im-

ages controllable. In addition, AAE better captures the data

manifold compared to VAE.

CAAE vs. AAE: The proposed CAAE is more similar to

AAE. The main difference from AAE is that the proposed

CAAE imposes discriminators on the encoder and genera-

tor, respectively. The discriminator on encoder guarantees

smooth transition in the latent space, and the discrimina-

tor on generator assists to generate photo-realistic face im-

ages. Therefore, CAAE would generate higher quality im-

ages than AAE as discussed in Sec. 4.4.

5. Experimental Evaluation

In the section, we will first clarify the process of data

collection (Sec. 5.1) and implementation of the proposed

CAAE (Sec. 5.2). Then, both qualitative and quantitative

comparisons with prior works and ground truth are per-

formed in Sec. 5.3. Finally, the tolerance to occlusion and

variation in pose and expression is illustrated in Sec. 5.4 .

5.1. Data Collection

We first collect face images from the Morph dataset [12]

and the CACD [2] dataset. The Morph dataset [12] is

the largest with multiple ages of each individual, includ-

ing 55,000 images of 13,000 subjects from 16 to 77 years

old. The CACD [2] dataset contains 13,446 images of 2,000

subjects. Because both datasets have limited images from

newborn or very old faces, we crawl images from Bing and

Google search engines based on the keywords, e.g., baby,

boy, teenager, 15 years old, etc. Because the proposed ap-

proach does not require multiple faces from the same sub-

ject, we simply randomly choose around 3,000 images from

the Morph and CACD dataset and crawl 7,670 images from

the website. The age and gender of the crawled faces are

estimated based on the image caption or the result from age

estimator [24]. We divide the age into ten categories, i.e.,

0–5, 6–10, 11–15, 16–20, 21–30, 31–40, 41–50, 51–60, 61–

70, and 71–80. Therefore, we can use a one-hot vector of

ten elements to indicate the age of each face during train-

ing. The final dataset consists of 10,670 face images with

a uniform distribution on gender and age. We use the face

detection algorithm with 68 landmarks [11, 5] to crop out

and align the faces, making the training more attainable.

5.2. Implementation of CAAE

We construct the network according to Fig. 3 with ker-

nel size of 5 × 5. The pixel values of the input images are

normalized to [−1, 1], and the output of E (i.e., z) is also

restricted to [−1, 1] by the hyperbolic tangent activation

function. Then, the desired age label, the one-hot vector,

is concatenated to z, constructing the input of G. To make

fair concatenation, the elements of label is also confined to

[−1, 1], where -1 corresponds to 0. Finally, the output is

also in range [−1, 1] through the hyperbolic tangent func-

tion. Normalizing the input may make the training process

converge faster. Note that we will not use the batch normal-

ization for E and G because it blurs personal features and

makes output faces drift far away from inputs in testing.

However, the batch normalization will make the framework

more stable if it is applied on Dimg . All intermediate lay-

ers of each block (i.e., E, G, Dz , and Dimg) use the ReLU

activation function.

In training, λ = 100, γ = 10, and the four blocks

are updated alternatively with a mini-batch size of 100

through the stochastic gradient descent solver, ADAM [13]

(α = 0.0002, β1 = 0.5). Face and age pairs are fed to the

network. After about 50 epochs, plausible generated faces

can be obtained. During testing, only E and G are active.

Given an input face without true age label, E maps the im-

age to z. Concatenating an arbitrary age label to z, G will
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Figure 7. Comparison to prior works of face aging. The first column shows input faces, and second column are the best aged faces cited

from prior works. The rest columns are our results from both age progression and regression. The red boxes indicate the comparable results

to the prior works.

generate a photo-realistic face corresponding to the age and

personality.

5.3. Qualitative and Quantitative Comparison

To evaluate that the proposed CAAE can generate more

photo-realistic results, we compare ours with the ground

truth and the best results from prior works [30, 12, 25, 27],

respectively. We choose FGNET [15] as the testing dataset,

which has 1002 images of 82 subjects aging from 0 to 69.

Comparison with ground truth: In order to verify

whether the personality has been preserved by the pro-

posed CAAE, we qualitatively and quantitatively compare

the generated faces with the ground truth. The qualitative

comparison is shown in Fig. 8, which shows appealing sim-

ilarity. To quantitatively evaluate the performance, we pair

the generated faces with the ground truth whose age gap is

larger than 20 years. There are 856 pairs in total. We design

a survey to compare the similarity where 63 volunteers par-

ticipate. Each volunteer is presented with three images, an

original image X, a generated image A, and the correspond-

ing ground truth image B under the same group. They are

asked whether the generated image A looks similar to the

ground truth B; or not sure. We ask the volunteers to ran-

domly choose 45 questions and leave the rest blank. We

receive 3208 votes in total, with 48.38% indicating that the

generated image A is the same person as the ground truth,

29.58% indicating they are not, and 22.04% not sure. The

voting results demonstrate that we can effectively generate

photo-realistic faces under different ages while preserving

their personality.

Comparison with prior work: We compare the perfor-

mance of our method with some prior works [30, 12, 25,

27], for face age progression and Face Transformer (FT) [6]

for face age regression. To demonstrate the advantages of

CAAE, we use the same input images collected from those

prior works and perform long age span progression. To
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Figure 8. Comparison to the ground truth.

compare with prior works, we cite their results as shown

in Fig. 7. We also compare with age regression works using

the FT demo [6] as shown in Fig. 9. Our results obviously

show higher fidelity, demonstrating the capability of CAAE

in achieving smooth face aging and rejuvenation. CAAE

better preserves the personality even with a long age span.

In addition, our results provide richer texture (e.g., wrinkle

for old faces), making old faces look more realistic. An-

other survey is conducted to statistically evaluate the perfor-

mance as compared with prior works, where for each testing

image, the volunteer is to select the better result from CAAE

or prior works, or hard to tell. We collect 235 paired images

of 79 subjects from previous works [30, 12, 25, 27]. We re-

ceive 47 responses and 1508 votes in total with 52.77% in-

dicating CAAE is better, 28.99% indicating the prior work

is better, and 18.24% indicating they are equal. This result

further verifies the superior performance of the proposed

CAAE.

F
T

O
u
rs

In
p
u
t

Figure 9. Comparison to prior work in rejuvenation. The first row

shows the input faces, the middle row shows the baby faces gener-

ated by FT [6] and the last row shows our results.

5.4. Tolerance to Pose, Expression, and Occlusion

As mentioned above, the input images have large vari-

ation in pose, expression, and occlusion. To demonstrate

the robustness of CAAE, we choose the faces with expres-

sion variation, non-frontal pose, and occlusion, respectively,

as shown in Fig. 10. It is worth noting that the previous

works [30, 12] often apply face normalization to alleviate

from the variation of pose and expression but they may

still suffer from the occlusion issue. In contrast, the pro-

posed CAAE obtains the generated faces without the need

to remove these variations, paving the way to robust perfor-

mance in real applications.

Figure 10. Tolerance to occlusion and variation in pose and ex-

pression. The very left column shows the input faces, and the right

columns are generated faces by CAAE from younger to older ages.

The first input face presents relatively more dramatic expression,

the second input shows only the face profile, and the last one is

partially occluded by facial marks.

6. Discussion and Future Works

In this paper, we proposed a novel conditional adver-

sarial autoencoder (CAAE), which first achieves face age

progression and regression in a holistic framework. We de-

viated from the conventional routine of group-based train-

ing by learning a manifold, making the aging progres-

sion/regression more flexible and manipulatable — from an

arbitrary query face without knowing its true age, we can

freely produce faces at different ages, while at the same

time preserving the personality. We demonstrated that with

two discriminators imposed on the generator and encoder,

respectively, the framework generates more photo-realistic

faces. Flexibility, effectiveness, and robustness of CAAE

have been demonstrated through extensive evaluation.

The proposed framework has great potential to serve as a

general framework for face-age related tasks. More specif-

ically, we trained four sub-networks, i.e., E, G, Dz , and

Dimg , but only E and G are utilized in the testing stage.

The Dimg is trained conditional on age. Therefore, it is able

to tell whether the given face corresponds to a certain age,

which is exactly the task of age estimation. For the encoder

E, it maps faces to a latent vector (face feature), which pre-

serves the personality regardless of age. Therefore, E could

be considered a candidate for cross-age recognition. The

proposed framework could be easily applied to other image

generation tasks, where the characteristics of the generated

image can be controlled by the conditional label. In the fu-

ture, we would extend current work to be a general frame-

work, simultaneously achieving age progressing (E and G),

cross-age recognition (E), face morphing (G), and age esti-

mation (Dimg).
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