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Abstract

Convnets have enabled significant progress in pedestrian

detection recently, but there are still open questions regard-

ing suitable architectures and training data. We revisit CNN

design and point out key adaptations, enabling plain Fas-

terRCNN to obtain state-of-the-art results on the Caltech

dataset.

To achieve further improvement from more and better

data, we introduce CityPersons, a new set of person

annotations on top of the Cityscapes dataset. The di-

versity of CityPersons allows us for the first time to

train one single CNN model that generalizes well over mul-

tiple benchmarks. Moreover, with additional training with

CityPersons, we obtain top results using FasterRCNN

on Caltech, improving especially for more difficult cases

(heavy occlusion and small scale) and providing higher loc-

alization quality.

1. Introduction

Pedestrian detection is a popular topic in computer vis-

ion community, with wide applications in surveillance, driv-

ing assistance, mobile robotics, etc. During the last dec-

ade, several benchmarks have been created for this task

[7, 8, 12]. These benchmarks have enabled great progress

in this area [2].

While existing benchmarks have enabled progress, it is

unclear how well this progress translate in open world per-

formance. We think it is time to give emphasis not only to

intra-dataset performance, but also across-datasets.

Lately, a wave of convolutional neural network (con-

vnet) variants have taken the Caltech benchmark top ranks

[31, 3, 21, 4, 27]. Many of these are custom architectures

derived from the FasterRCNN [14, 13, 26] general object

detector. We show here that a properly adapted Faster-

RCNN can match the detection quality of such custom ar-

chitectures. However since convnets are high capacity mod-

els, it is unclear if such model will benefit from more data.

To move forward the field of pedestrian detection, we

Figure 1: The diversity of the newly introduced CityPersons

annotations allows to train one convnet model that general-

izes well over multiple benchmarks.

introduce “CityPersons”, a new set of annotations on top

of Cityscapes [5]. These are high quality annotations, that

provide a rich diverse dataset, and enable new experiments

both for training better models, and as new test benchmark.

In summary, our main contributions are:

1. We introduce CityPersons, a new set of high quality

bounding box annotations for pedestrian detection on the

Cityscapes dataset (train, validation, and test sets). The

train/val. annotations will be public, and an online bench-

mark will be setup.

2. We report new state-of-art results for FasterRCNN on

Caltech and KITTI dataset, thanks to properly adapting the

model for pedestrian detection and using CityPersons

pre-training. We show in particular improved results for

more difficult detection cases (small and occluded), and

overall higher localization precision.

3. Using CityPersons, we obtain the best reported across-

dataset generalization results for pedestrian detection.

4. We show preliminary results exploiting the additional

Cityscapes annotations. Using semantic labelling as addi-
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tional supervision, we obtain promising improvements for

detecting small persons.

Section 1.1 covers the related work, section 2 discusses how

to adapt FasterRCNN for best detection quality, section 3

describes our annotation process, some statistics of the new

data and baseline experiments. Finally, section 4 explores

different ways to use CityPersons to improve person de-

tection quality.

1.1. Related work

In this paper, we investigate convnets, datasets and se-

mantic labels for pedestrian detection, so we discuss related

works for these three aspects.

Convnets for pedestrian detection. Convolutional

neural networks (convnets) have achieved great success in

classification and detection on the ImageNet [20], Pascal,

and MS COCO datasets [15]. FasterRCNN [14, 13, 26] has

become the de-facto standard detector architecture. Many

variants work try to extend it [25, 3, 18], but few improve

results with a simpler architecture. A notable exception is

SSD [23], which obtains comparable results with a simpler

architecture.

Initial attempts to apply convnets for pedestrian detec-

tion, used existing detectors (mainly decision forests over

hand-crafted features [2, 33]) outputs and re-scored them

with a convnet classifier (plus bounding box regression)

[16, 28, 1, 27]. Better results are shown when using the re-

verse configuration: detections resulted from a convnet are

re-scored with decision forests classifier (trained over con-

vnet features) [4, 31]. Recently good results are presented

by customized pure convnet architectures such as MS-CNN

[3] and SA-FastRCNN [21].

In this paper we show that a properly adapted plain Fas-

terRCNN matches state-of-the-art detection quality without

needing add-ons.

Pedestrian datasets. In the last decade several datasets

have been created for pedestrian detection training and

evaluation. INRIA [7], ETH [11], TudBrussels [29], and

Daimler [10] represent early efforts to collect pedestrian

datasets. These datasets have been superseded by larger

and richer datasets such as the popular Caltech-USA [9]

and KITTI [12]. Both datasets were recorded by driving

through large cities and provide annotated frames on video

sequences.

Despite the large number of frames, both datasets suffer

from low-density. With an average of ∼ 1 person per im-

age, occlusions cases are severely under-represented. An-

other weakness of both dataset, is that each was recorded

in a single city. Thus the diversity in pedestrian and back-

ground appearances is limited.

Building upon the strengths of the Cityscapes data [5], our

new annotations provide high quality bounding boxes, with

larger portions of occluded persons, and the diversity of 27

different cities. Such diversity enables models trained on

CityPersons to better generalize to other test sets.

Semantic labels for pedestrian detection. In section 4.3

we will explore using the semantic labels from Cityscapes

to train a pedestrian detector with better context modelling.

The idea of using semantic labels to improve detections is

at least a decade old [30], and two recent incarnations are

[17, 6]. We will use the semantic probability maps com-

puted from a semantic labeller network as additional input

channels (next to RGB channels) for the pedestrian detec-

tion convnet (see section 4.3).

2. A convnet for pedestrian detection

Before delving into our new annotations (in section 3),

we first build a strong reference detector, as a tool for

our experiments in sections 3.4 and 4. We aim at finding

a straightforward architecture that provides good perform-

ance on the Caltech-USA dataset [9].

Training, testing (MRO, MRN ). We train our Caltech

models using the improved 10× annotations from [32],

which are of higher quality than the original annotations

(less false positives, higher recall, improved ignore regions,

and better aligned bounding boxes). For evaluation we fol-

low the standard Caltech evaluation [9]; log miss-rate (MR)

is averaged over the FPPI (false positives per image) range

of [10−2, 100] FPPI. Following [32], we evaluate both

on the “original annotations” (MRO) and new annotations

(MRN ); and indicate specifically which test set is being

used each time. Unless otherwise specified, the evaluation

is done on the “reasonable” setup [9].

FasterRCNN. The FasterRCNN detector obtains com-

petitive performance on general object detection. After re-

training with default parameters it will under-perform on

the pedestrian detection task (as reported in [31]). The

reason why vanilla FasterRCNN underperforms on the Cal-

tech dataset is that it fails to handle small scale objects

(50∼ 70 pixels), which are dominant on this dataset. To

better handle small persons, we propose five modifications

(Mi) that bring the MRO (miss-rate) from 20.98 down to

10.27 (lower is better, see table 1). As of writing, the best

reported results on Caltech is 9.6 MRo, and our plain Fas-

terRCNN ranks third with less than a point difference. We

train FasterRCNN with VGG16 convolutional layers, ini-

tialized via ImageNet classification pre-training [26].

M1 Quantized RPN scales. The default scales of the RPN

(region proposal network in FasterRCNN) are sparse and
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Detector aspect MRO ∆MR

FasterRCNN-vanilla 20.98 -

+ quantized rpn scales 18.11 + 2.87

+ input up-scaling 14.37 + 3.74

+ Adam solver 12.70 + 1.67

+ ignore region handling 11.37 + 1.33

+ finer feature stride 10.27 + 1.10

FasterRCNN-ours 10.27 + 10.71

Table 1: Step by step improvements on Caltech from vanilla

FasterRCNN to our adapted version, we gain 10.71 MR

points in total.

assume a uniform distribution of object scales. However,

when we look at the training data on Caltech, we find much

more small scale people than large ones. Our intuition is to

let the network generate more proposals for small sizes, so

as to better handle them. We split the full scale range in 10
quantile bins (equal amount of samples per bin), and use the

resulting 11 endpoints as RPN scales to generate proposals.

M2 Input up-scaling. Simply up-sampling the input im-

ages by 2x, provides a significant gain of 3.74 MRO percent

points (pp). We attribute this to a better match with the Im-

ageNet pre-training appearance distribution. Using larger

up-sampling factors does not show further improvement.

M3 Finer feature stride. Most pedestrians in Caltech have

height×width = 80×40. The default VGG16 has a feature

stride of 16 pixels. Having such a coarse stride compared to

the object width reduces the chances of having a high score

over persons, and forces the network to handle large dis-

placement relative to the object appearance. Removing the

fourth max-pooling layer from VGG16 reduces the stride to

8 pixels; helping the detector to handle small objects.

M4 Ignore region handling. The vanilla FasterRCNN

code does not cope with ignore regions (areas where the

annotator cannot tell if a person is present or absent, and

person groups where individuals cannot be told apart).

Simply treating these regions as background introduces

confusing samples, and has a negative impact on the

detector quality. By ensuring that during training the RPN

proposals avoid sampling the ignore regions, we observe a

1.33 MR pp improvement.

M5 Solver. Switching from the standard Caffe SGD solver

to the Adam solver [19], provides a consistent gain in our

experiments.

We show the step-by-step improvements in table 1. M1

and M2 are key, while each of the other modifications add

about ∼ 1 MR pp. All together these modifications adapt

the vanilla FasterRCNN to the task of pedestrian detection.

Other architectures. We also explored other architec-

tures such as SSD [23] or MS-CNN [3] but, even after ad-

aptations, we did not manage to obtain improved results.

Amongst all the variants reaching ∼ 10% MR our Faster-

RCNN is the simplest.

Conclusion. Once properly adapted, FasterRCNN ob-

tains competitive performance for pedestrian detection on

the Caltech dataset. This is the model we will use in all

following experiments.

In section 3 we introduce a new dataset that will enable

further improvements of detection performance.

3. CityPersons dataset

The Cityscapes dataset [5] was created for the task of se-

mantic segmentation in urban street scenes. It consists of a

large and diverse set of stereo video sequences recorded in

streets from different cities in Germany and neighbouring

countries. Fine pixel-level annotations of 30 visual classes

are provided for 5 000 images from 27 cities. The fine an-

notations include instance labels for persons and vehicles.

Additionally 20 000 images from 23 other cities are annot-

ated with coarse semantic labels, without instance labels.

In this paper, we present the CityPersons dataset, built

upon the Cityscapes data to provide a new dataset of interest

for the pedestrian detection community. For each frame

in the 5 000 fine-annotations subset, we have created high

quality bounding box annotations for pedestrians (section

3.1). In section 3.2 we contrast CityPersons with pre-

vious datasets regarding: volume, diversity and occlusion.

In section 4 we show how to use this new data to improve

results on other datasets.

3.1. Bounding box annotations

The Cityscapes dataset already provides instance level

segments for each human. These segments indicate the vis-

ible parts of humans. Simply using bounding boxes of these

segments would raise three issues. I1) The box aspect ratio

would be irregular, persons walking have varying width. It

has been proposed to thus normalize aspect ratio for pedes-

trian annotations. I2) Even after normalizing aspect ratio,

the boxes would not align amongst each other. They will

be off in the horizontal axis due to being normalized based

on the segment centre rather the object centre. They will

be off in the vertical axis due to variable level of occlusion

for each person. It has been shown that pedestrian detectors

benefit from well aligned training samples [32], and con-

versely, training with misaligned samples will hamper res-

ults. I3) Existing datasets (INRIA, Caltech, KITTI) have

defined bounding boxes covering the full object extent, not

just the visible area. In order to train compatible, high qual-

ity models, we need to have annotations that align well the
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full extent of the persons bodies (“amodal bounding box”

[22]).

Fine-grained categories. In the Cityscapes dataset, hu-

mans are labelled as either person or rider. In this paper, we

provide further fine-grained labels for persons. Based on

the postures, we group all humans into four categories: ped-

estrian (walking, running or standing up), rider (riding bi-

cycles or motorbikes), sitting person, and other person (with

unusual postures, e.g. stretching).

Annotation protocol. For pedestrians and riders (cyc-

lists, motorists), we follow the same protocol as used in

[32], where the full body is annotated by drawing a line

from the top of the head to the middle of two feet, and the

bounding box is generated using a fixed aspect ratio (0.41).

This protocol has been shown to provide accurate align-

ments. The visible bounding box for each instance is the

tightest one fully covering the segment mask, and can be

generated automatically from the segment. See an illustra-

tion in figure 2. The occlusion ratio can then be computed

as
area(BB−vis)
area(BB−full) .

As of other categories of persons, i.e. sitting and other

persons, there is no uniform alignment to apply, so we only

provide the segment bounding box for each of them without

full body annotations.

Apart from real persons, we also ask the annotators to

search over the whole image for areas containing fake hu-

mans, for instance, people on posters, statue, mannequin,

people’s reflection in mirror or window, etc., and mark them

as ignore regions.

Annotation tool. Since we already have the segment

mask for each instance, we can do the annotations in a more

efficient way than from scratch. To this end, we develop a

new annotation tool to avoid searching for persons over the

images by exploiting the available instance segments. This

tool pops out one person segment at a time and asks the

annotator to recognize the fine-grained category first and

then do the full body annotation for pedestrians and riders.

Thanks to the high-quality of segmentation annotations, us-

ing such a tool also reduces the risk of missing persons,

especially at crowded scenes. But the ignore region annota-

tions have to be done by searching over the whole images.

3.2. Statistics

Volume. We show the number of bounding box annota-

tions provided by us in table 2. In a total of 5 000 images,

we have ~35k person and ~13k ignore region annotations.

And we notice the density of persons are consistent across

train/validation/test subsets. Please note we use the same

split as Cityscapes.

(a) Image (b) Segmentation mask (c) Bounding box anno.

Figure 2: Illustration of bounding box annotations for ped-

estrians. For each person, the top of the head and middle

of the feet is drawn by the annotator. An aligned bounding

box is automatically generated using the fixed aspect ratio

(0.41). The bounding box covering the segmentation mask

is used to estimate the visible part.

Train Val. Test Sum

# cities 18 3 6 27

# images 2 975 500 1 575 5 000
# persons 19 654 3 938 11 424 35 016
# ignore regions 6 768 1 631 4 773 13 172

Table 2: Statistics of bounding box annotations on

CityPersons dataset.

Diversity. We compare the diversity of Caltech, KITTI

and CityPersons in table 3. Since KITTI test set annota-

tions are not publicly available, we only consider the train-

ing subset for a fair comparison.

The CityPersons training subset was recorded across

18 different cities, three different seasons, and various

weather conditions. While the Caltech and KITTI datasets

are only recorded in one city at one season each.

In terms of density, we have on average ~7 persons per

image. This number is much higher than that on the Cal-

tech and KITTI datasets, where each image only contains

~1 person on average.

Also, the number of identical persons is another import-

ant evidence of diversity. On our CityPersons dataset, the

number of unique persons amounts up to ∼20 000. In con-

trast, the Caltech and KITTI dataset only contains ~ 1 300
and ~ 6 000 unique pedestrians respectively. Note KITTI

and CityPersons frames are sampled very sparsely, so

each person is considered as unique.

CityPersons also provides fine-grained labels for per-

sons. As shown in figure 3, pedestrians are the majority

(83%). Although riders and sitting persons only occupy

10% and 5% respectively, the absolute numbers are still

considerable, as we have a large pool of ~35k persons.

Occlusion. The Cityscapes data was collected by driv-

ing through the centre of some highly populated cities,

e.g. Frankfurt and Hamburg. We notice that on some im-
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Caltech KITTI CityPersons

# country 1 1 3

# city 1 1 18

# season 1 1 3

# person/image 1.4 0.8 7.0

# unique person 1 273 6 336 19 654

Table 3: Comparison of diversity on different datasets

(training subset only).

pedestrian

83%

rider

10%

sitting 

5%

other 

2%

Figure 3: Fine-grained person categories on CityPersons.
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Figure 4: Comparison of occlusion distributions on

CityPersons and Caltech datasets. CityPersons con-

tains more occlusions in the reasonable subset than Caltech.
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Figure 5: Top 9 of quantized 11 occlusion patterns of ped-

estrians on CityPersons dataset. Two numbers on top in-

dicate percentage and average occlusion ratio of samples

clustered into each pattern.

ages, there are ~100 people walking on the street, highly

occluded by each other. Such a high occlusion is rarely

seen in previous datasets. In figure 4, we compare the

distribution of pedestrians at different occlusion levels for

Caltech and CityPersons. We notice that on Caltech

there are more than 60% fully visible pedestrians, while

on CityPersons there are less than 30%. This indicates

we have two times more occlusions than Caltech, which

makes CityPersons a more interesting ground for occlu-

sion handling. Moreover, on the reasonable subset (<=0.35

occlusion) the community typically use, Caltech is domin-

ated by fully visible pedestrians, while CityPersons has

more occlusion cases.

In order to understand which kinds of occlusions we have

on CityPersons, we quantize all persons into 11 patterns

and show the top 9 of them in figure 5 (the last two pat-

terns are not shown as they are of less than 1% and thus

noisy). For visualization, we resize each full body bound-

ing box to a fixed size, and then overlay the segmentation

mask. For each pattern, the bright area shows the visible

part and the two numbers on top indicate the percentage and

average occlusion ratio of corresponding pattern. The first

two patterns (55.9%) roughly cover the “reasonable” sub-

set; the third and fourth patterns correspond to occlusions

from either left or right side. Apart from that, we still have

about 30% pedestrians distributed in various patterns, some

of which have a very high occlusion ratio (>0.9). Such dis-

tributed occlusion patterns increase the diversity of the data

and hence makes the dataset a more challenging test base.

3.3. Benchmarking

With the publication of this paper, we release the data on

the Cityscapes website1, where train/validation annotations

can be downloaded, and an online evaluation server is avail-

able to compute numbers over the held-out test annotations.

We follow the same evaluation protocol as used for Cal-

tech [9], by allowing evaluation on different subsets. In this

paper, MR stands for log-average miss rate on the “reason-

able” setup (scale [50, ∞], occlusion ratio [0, 0.35]) unless

otherwise specified. While evaluating pedestrian detection

performance, cyclists/sitting persons/other persons/ignore

regions are not considered, which means detections match-

ing with those areas are not counted as mistakes.

3.4. Baseline experiments

To understand the difficulties of pedestrian detection on

the CityPersons dataset, we train and evaluate three dif-

ferent detectors. ACF [8] and Checkerboards [33] are rep-

resentatives from the Integral Channel Features detector

(ICF) family, while FasterRCNN [26] acts as the state-of-

the-art detector. We set up the FasterRCNN detector by fol-

lowing the practices we learned from Caltech experiments

(section 2). Since CityPersons images are ~7 times larger

than Caltech, we are only able to use an upsampling factor

of 1.3 to fit in 12GB of GPU memory.

We re-train each detector using the CityPersons train-

ing set and then evaluate on the validation set. Note that

1https://www.cityscapes-dataset.com/
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Figure 6: Comparison of baseline detectors on Caltech test

and CityPersons val. set (reasonable). Numbers are

MRN on Caltech and MR on CityPersons (lower is bet-

ter). Ranking of methods between two datasets is stable.

For all methods, CityPersons is more difficult to solve

than Caltech.

all the CityPersons numbers reported in this paper are on

the validation set. Consistent with the reasonable evaluation

protocol, we only use the reasonable subset of pedestrians

for training; cyclists/sitting persons/other persons/ignore re-

gions are avoided for negative sampling.

In figure 6, we show the comparison of the above three

detectors on CityPersons and Caltech. FasterRCNN out-

performs ICF detectors by a large margin, which indicates

the adaptation of FasterRCNN on Caltech is also transfer-

able to CityPersons. Moreover, we find the ranking of

three detectors on CityPersons is consistent with that on

Caltech, but the performance on CityPersons dataset is

lower for all three detectors. This comparison shows that

CityPersons is a more challenging dataset, thus more in-

teresting for future research in this area.

To understand the impact of having a larger amount of

training data, we show how performance grows as training

data increases in figure 7. We can see performance keeps

improving with more data. Therefore, it is of great import-

ance to provide CNNs with a large amount of data.

Considering the trade off between speed and quality, we

use an alternative model of our FasterRCNN by switching

off input image upsampling for the analysis experiments

shown in figure 7 and section 4.3. This model is about 2x

faster at both training and test time, but only drops the per-

formance by ~2 pp (from 13% MR to 15% MR).

Conclusion. The CityPersons dataset can serve as a

large and diverse database for training a powerful model,

as well as a more challenging test base for future research

on pedestrian detection.

24.57
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15.67 15.14

10
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12.50% 25% 50% 75% 100%

M
R

Proportion of training data

Figure 7: Quality as function of training volume. Faster-

RCNN model trained/evaluated on CityPersons train/val.

set (MR: lower is better).

4. Improve quality using CityPersons

Having the CityPersons dataset at hand, we now pro-

ceed to illustrate three different ways it enables to im-

prove pedestrian detection results (§4.1, §4.2, §4.3). As we

will see, CityPersons is particularly effective at improv-

ing results for small scale pedestrians, occluded ones, and

providing higher localization accuracy.

4.1. Generalization across datasets

Commonly, a detector is trained on the training set of

the target benchmark. As such, one needs to train multiple

detectors for different benchmarks. Ideally, one would wish

to train one detector that is able to perform well on multiple

benchmarks. Since the CityPersons dataset is large and

diverse, we wonder if it can allow us to train a detector with

good generalization capabilities.

To see how well CityPersons data generalizes across

different datasets, we train models on Caltech, KITTI and

CityPersons datasets, and then apply each of them on

six different test sets: Caltech, KITTI, CityPersons, IN-

RIA, ETH and Tud-Brussels. For KITTI, we split the pub-

lic training data into training and validation subsets (2:1)

by random sampling. Table 4 shows comparisons of two

detectors: ACF [8] and FasterRCNN [26].

We observe:

(1) Overall, when trained with the same data Faster-

RCNN generalizes better across datasets than ACF. (Note

that FasterRCNN benefits from ImageNet pre-training,

while ACF does not.)

(2) For both detectors, the mean MR across test sets is

significantly better for models trained with CityPersons

training data. CityPersons generalizes better than Cal-

tech and KITTI.

These experiments confirm the generalization ability of

CityPersons dataset, that we attribute to the size and di-

versity of the Cityscapes data, and to the quality of the

bounding boxes annotations.
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Train
Caltech KITTI CityPersons

Test

Caltech 27.63 63.15 51.28

KITTI 49.99 32.06 46.74

CityPersons 72.89 94.28 33.10

INRIA 63.39 67.49 50.23

ETH 78.64 89.94 56.30

Tud-Brussels 63.22 69.25 67.21

mean MR 59.29 69.36 50.81

(a) ACF

Train
Caltech KITTI CityPersons

Test

Caltech 10.27 46.86 21.18

KITTI 10.50 8.37 8.67

CityPersons 46.91 51.21 12.81

INRIA 11.47 27.53 10.44

ETH 57.85 49.00 35.64

Tud-Brussels 42.89 45.28 36.98

mean MR 29.98 38.04 20.95

(b) FasterRCNN

Table 4: Generalization ability of two different methods,

trained and tested over different datasets. All numbers are

MR on reasonable subset. Bold indicates the best results

obtained via generalization across datasets (different train

and test).

4.2. Better pre­training improves quality

In table 4, we find the CityPersons data acts as very

good source of training data for different datasets, assuming

we are blind to the target domain. Furthermore, when we

have some training data from the target domain, we show

CityPersons data can be also used as effective external

training data, which helps to further boost performance.

First, we consider Caltech as the target domain, and com-

pare the quality of two models. One is trained on Caltech

data only; and the other is first trained on CityPersons,

and then finetuned on Caltech (CityPersons→Caltech).

From table 5, we can see the additional training with

CityPersons data improves the performance in the fol-

lowing three aspects.

(1) CityPersons data improves overall perform-

ance. When evaluated on the reasonable setup, the

CityPersons→Caltech model obtains ~1 pp gain.

(2) CityPersons data improves more for harder cases,

e.g. smaller scale, heavy occlusion. We notice the gap

for heavy occlusion is large (~9 pp), due to more occluded

training samples on the CityPersons dataset. Similar

trend is also found for smaller scale persons ([30,80]).

(3) CityPersons data helps to produce better-aligned

O/N Setup
Scale

IoU
Cal- CityPersons

∆MR
range tech →Caltech

MRO Reasonable [50, ∞] 0.5 10.3 9.2 + 1.1

MRO Smaller [30, 80] 0.5 52.0 48.5 + 3.5

MRO Heavy occl. [50, ∞] 0.5 68.3 57.7 + 8.6

MRN Reasonable [50, ∞] 0.5 5.8 5.1 + 0.7

MRN Reasonable [50, ∞] 0.75 30.6 25.8 + 4.8

Table 5: Gains from additional CityPersons training at

different evaluation setups on Caltech test set. MRO and

MRN indicate numbers evaluated on original and new an-

notations [32]. CityPersons pre-training helps more for

more difficult cases. See also table 6.

Setup
Scale

IoU KITTI
CityPersons

∆MR
range →KITTI

Reasonable [50, ∞] 0.5 8.4 5.9 + 2.5

Reasonable [50, ∞] 0.75 43.3 39.2 + 4.1

Smaller [30, 80] 0.5 37.8 27.1 + 10.7

Table 6: Gains from additional CityPersons training at

different evaluation setups on KITTI validation set. All

numbers are MR (see §2). Here also, CityPersons pre-

training helps more for more difficult cases. See also table

5.

detections. The Caltech new annotations are well aligned,

thus a good test base for alignment quality of detections.

When we increase the IoU threshold for matching from

0.50 to 0.75, the gain from CityPersons data also grows

from 1 pp to 5 pp. This gap indicates the high quality of

CityPersons annotations are beneficial to produce better-

aligned detections.

Compared with other state-of-the-art detectors, our best

model using CityPersons for pre-training obtains 5.1%

MRN at IoU 0.50 evaluation, outperforming previous best

reported results (7.3% MRN ) by 2.2 pp (figure 8a); this gap

becomes even larger (~ 20 pp) when we use a stricter IoU

of 0.75 (figure 8b). From the comparison, our FasterRCNN

detector obtains state-of-the-art results on Caltech, and im-

proves the localization quality significantly.

When we consider KITTI as the target domain, we

also see improvements brought by additional training with

CityPersons data. As shown in table 6, the gain on reas-

onable evaluation setup is 2.5 pp, while for smaller scale,

the gap becomes more impressive (10.7 pp). The 4.1 pp

gap at IoU 0.75 again verifies CityPersons data helps to

produce better aligned detections.

4.3. Exploiting Cityscapes semantic labels

In this subsection, we explore how much improvement

can be obtained for pedestrian detection by leveraging the
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Figure 8: Comparison of state-of-the-art results on the Cal-

tech test set (reasonable subset), MRN .

(a) Original image (b) Semantic map

Figure 9: Example of semantic map generated by an FCN-

8s model trained on Cityscapes coarse annotations.

semantic labels available on the Cityscapes dataset.

We use an FCN-8s [24] model trained on Cityscapes

coarse annotations to predict semantic labels. Note we can-

not involve fine-annotation images in this semantic labelling

training, otherwise our following detection training will suf-

fer from overfitting. Although this model is only trained

on coarse annotations, we can see the semantic segment-

ation mask provides a reasonable structure for the whole

scene (figure 9). Then we concatenate semantic channels

Scale range Baseline + Semantic ∆MR

[50, ∞] 15.4 14.8 + 0.6

[100, ∞] 7.9 8.0 + 0.1

[75, 100] 7.2 6.7 + 0.5

[50, 75] 25.6 22.6 + 3.0

Table 7: Improvements from semantic channels in differ-

ent scale ranges. Numbers are MR on the CityPersons

val. set. Albeit there is small overall gain, adding semantic

channels helps for the difficult case of small persons.

with RGB channels and feed them altogether into convnets,

letting convnets to figure out the hidden complementarity.

For the reasonable evaluation setup, we get an overall

improvement of ~0.6 pp from semantic channels. When

we look at the fine-grained improvements for different scale

ranges, we find that semantic channels help more for small

persons, which is a hard case for our task (table 7).

As a preliminary trial, we already get some improve-

ments from semantic labels, which encourage us to explore

more effective ways of using semantic information.

5. Summary

In this paper, we first show that a properly adapted

FasterRCNN can achieve state-of-the-art performance on

Caltech. Aiming for further improvement from more and

better data, we propose a new diverse dataset namely

CityPersons by providing bounding box annotations for

persons on top of Cityscapes dataset. CityPersons shows

high contrast to previous datasets as it consists of images

recorded across 27 cities, 3 seasons, various weather condi-

tions and more common crowds.

Serving as training data, CityPersons shows strong

generalization ability from across dataset experiments.

Our FasterRCNN model trained on CityPersons obtains

reasonable performance over six different benchmarks.

Moreover, it further improves the detection performance

with additional finetuning on the target data, especially for

harder cases (small scale and heavy occlusion), and also en-

hance the localization quality.

On the other hand, CityPersons can also be used as a

new test benchmark as there are more challenges, e.g. more

occlusions and diverse environments. We will create a web-

site for this benchmark and only allows for online evalu-

ations by holding out the test set annotations.

Other than bounding box annotations for persons, there

are additional information to leverage on CityPersons,

e.g. fine semantic segmentations, other modalities of data

(stereo, GPS), and un-annotated neighbouring frames. Our

preliminary results of using semantic labels show promising

complementarity. These rich data will motivate more efforts

to solve the problem of pedestrian detection.
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