
Learning Category-Specific 3D Shape Models from Weakly Labeled 2D Images

Dingwen Zhang1,2, Junwei Han1∗, Yang Yang1, Dong Huang2

1Northwestern Polytechnical University 2Carnegie Mellon University

{zhangdingwen2006yyy,junweihan2010,Tp030ny}@gmail.com,dghuang@andrew.cmu.edu

Abstract

Recently, researchers have made great processes to build

category-specific 3D shape models from 2D images with

manual annotations consisting of class labels, keypoints,

and ground truth figure-ground segmentations. However,

the annotation of figure-ground segmentations is still labor-

intensive and time-consuming. To further alleviate the bur-

den of providing such manual annotations, we make the ear-

liest effort to learn category-specific 3D shape models by

only using weakly labeled 2D images. By revealing the un-

derlying relationship between the tasks of common object

segmentation and category-specific 3D shape reconstruc-

tion, we propose a novel framework to jointly solve these

two problems along a cluster-level learning curriculum.

Comprehensive experiments on the challenging PASCAL

VOC benchmark demonstrate that the category-specific 3D

shape models trained using our weakly supervised learning

framework could, to some extent, approach the performance

of the state-of-the-art methods using expensive manual seg-

mentation annotations. In addition, the experiments also

demonstrate the effectiveness of using 3D shape models for

helping common object segmentation.

1. Introduction

Nowadays, learning object models to recognize object

categories, discover object locations, and segment objec-

t masks from given images has been widely studied and

could almost achieve performance that approaches the hu-

man expectation. However, another interesting and mean-

ingful problem—constructing rich internal representation,

such as the depth information and 3D poses, of the pre-

sented objects—still remains to be challenging and under-

studied. To address this problem, one promising solution is

to build 3D shape models of the objects appearing in the giv-

en images, which could be potentially utilized to generate

the depth maps [28], perform pose correspondence [39], and

construct the specific instances in each single image [17].

∗Corresponding author.

Figure 1. Illustration of the most recent progress [20, 7] in learn-

ing 3D shape models from 2D images, which could infer 3D shape

models by using the 2D annotations, including the class labels,

ground truth figure-ground segmentations, and a small set of key-

points, while the extra 3D shape training data are not required.

Compared with these methods, this paper aims to learning 3D

shape models even without using the ground truth figure-ground

segmentations, which could significantly alleviate the manual an-

notation efforts for learning 3D shape models.

So how to construct the 3D shape models? In some early

approaches, such as [22, 26], a precise 3D shape model of

the target object is manually provided in advance. In other

words, the 3D shape models used by these approaches to

reconstruct the instances in each given image are obtained

directly by the human design. Another group of approaches

were proposed to leverage the 3D shape training data (e.g.

those obtained by 3D scanning) to reconstruct the object-
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s in the given images via prototype alignment [3, 28], us-

ing morphable models [1, 40] or deep neural networks [10].

Kolev et al. [21] attempted to estimate the 3D geometry of

the object under the guidance of user-interaction. Howev-

er, their approach could only work on the calibrated images

captured under manually controlled environment. Similar-

ly, [25] also needed to constrain the input images from fixed

camera locations. By relying on manual design, 3D scan-

ning, or manually controlled imaging environment to ob-

tain the 3D shape models, it is infeasible to use the afore-

mentioned approaches for the images in the wild, which of-

ten contain unknown object categories and various image

scenes. To solve this problem, some most recent approach-

es [7, 20] have made efforts to learn 3D shape models with-

out using any 3D shape training data. As shown in Fig. 1,

these approaches could successfully build 3D object shape

models by only relying on the 2D image data manually an-

notated with class labels, ground truth figure-ground seg-

mentations, and a small set of keypoints, which provides

a solution to reconstruct dense, per-object 3D shapes for

images in popular object detection datasets, e.g., PASCAL

VOC [14] and ImageNet [11].

Along this line of research, this paper makes effort-

s to further significantly alleviate the burden of provid-

ing manual annotations for learning 3D shape models. As

shown in Fig. 1, although the annotations of image label-

s and keypoints nowadays could be easily crowdsourced

with Amazon Mechanical Turk by requiring only a few

clicks per image, providing ground-truth annotations of the

figure-ground segmentation masks still remains to be labor-

intensive and time-consuming. Thus, we propose to make

the earliest attempt to study how to learn 3D shape models

from weakly labeled 2D images1 which are defined as:

Definition (Weakly labeled 2D images:) Images only an-

notated with the class labels and a small number of key-

points while the object segmentation masks (the most time-

consuming for 2D manual annotation 2) are not needed.

Apparently, learning 3D shapes from such weakly labeled

2D data tends to be much more challenging. However, it is

of great significance as it could lead 3D shape modeling to a

unprecedented cheap fashion and thus facilitate large-scale

practical applications.

For learning category-specific 3D shape models from

weakly labeled 2D images, we propose to jointly address

two sub-tasks simultaneously: 1) segmenting the common

objects appearing in the image collection of a certain ob-

ject category (i.e., common object segmentation), and 2)

learning the category-specific 3D shape models for the co-

occurring objects of the image collection (i.e., category-

1The “weak label” defined here is different from those in [35, 19, 15].
2According to our statistics, the time cost for manually annotating

class labels, keypoints, and segmentation masks are around 1.2s, 4.4s, and

256.1s per image, respectively.

Figure 2. Examples from the PASCAL VOC dataset to illustrate

that practical image collections always exhibit significant intra-

class variability, making it challenging for both common object

segmentation and category-specific 3D shape reconstruction.

Figure 3. Through viewpoint estimation, the two sub-tasks dis-

cussed in this work (i.e., common object segmentation and

category-specific 3D shape reconstruction) could help each other

by providing useful information to the other.

specific 3D shape reconstruction). Essentially, there is deli-

cate relationship between these two tasks, which, however,

still remains to be under-explored. To our best knowledge,

both of common object segmentation and category-specific

3D shape reconstruction need to leverage the global shape

information from multiple images rather than just process-

ing each singe image separately. By exploring the global

shape information from the image collections, it would in-

evitably suffer from large intra-class variations in terms of

varying shapes, textures, sizes, and viewpoints (see Fig. 2).

Thus, to better capture the global shape information, both

of them need to carefully explore the low-frequency base

shape and simultaneously handle the high-frequency detail-

s. Besides such common properties, it is more interesting

that these two tasks could actually work compatibly and

help each other (see Fig. 3):

Common object segmentation helps category-specific

3D shape reconstruction: The figure-ground ob-

ject masks generated by common object segmenta-

tion could help providing informative bottom-up shape

cues for building category-specific 3D shape models.

Category-specific 3D shape reconstruction helps com-

mon object segmentation: The 3D shape model-

s built by category-specific 3D shape reconstruction

technology could provide helpful yet under-explored

top-down priors for common object segmentation.
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Figure 4. The proposed framework for learning category-specific 3D shape models from weakly labeled 2D image data.

Based on the above observation and discussion, we pro-

pose a novel framework to jointly conduct common ob-

ject segmentation and category-specific 3D shape recon-

struction, which leads to the implementation of learning

category-specific 3D shape models from weakly labeled 2D

images. As shown in Fig. 4, we first collect the category-

specific instances by using the provided class labels and

keypoints. Then, with the help of the annotated keypoints,

we adopt the technique of recovering non-rigid 3D shape

from image streams (NRSfM) [6] to estimate the camer-

a viewpoint parameters for the training instances in each

object category. Afterwards, inspired by the most recen-

t progress in curriculum learning [8, 33], we design a

cluster-level learning curriculum to guide the learning of

the category-specific 3D shape models. Basically, we first

decompose the category-specific instance collection into

subgroups and then build a learning curriculum to encour-

age subgroups with more compact appearance and com-

plete shape to be learnt with higher priority. Afterward-

s, the learner would gradually infer the object segmenta-

tion masks and category-specific 3D shape models along

the established learning curriculum in an iterative fashion.

Specifically, we first infer the object masks within the sub-

groups with high priority. Then, we use the obtained ob-

ject masks to reconstruct coarse category-specific 3D shape

models. The obtained 3D shape models could in turn pro-

vide the top-down prior for common object segmentation

via a viewpoint guided-2D mask projection. Finally, the

whole learning framework could obtain meaningful results

including the segmentation masks and the category-specific

3D shape models.

We have three major contributions in this paper:

• We make the earliest effort to learn category-specific

3D shape models only from weakly labeled 2D im-

ages, which could largely save the time and labor for

providing the figure-ground segmentation annotation-

s manually. It is also of great significance to lead 3D

shape modeling to a unprecedented cheap fashion and

thus facilitate large-scale practical applications.

• By discovering the underlying relationship between

the problems of common object segmentation and

category-specific 3D shape reconstruction, we propose

a novel framework for jointly solving these two prob-

lems along a learning curriculum, which gradually re-

alizes the learning of category-specific 3D shape mod-

els from weakly labeled 2D images.

• Comprehensive experiments have been conducted to

demonstrate the effectiveness of the proposed frame-

work. Encouragingly, category-specific 3D shape

models trained using our weakly supervised frame-

work approach the performance of some state-of-

the-art methods using a large amount of manual

segmentation-level annotation. In addition, we also

demonstrate the effectiveness by using 3D shape mod-

els for helping common object segmentation.

2. The Proposed Approach

2.1. Viewpoint Estimation

In order to estimate the camera viewpoint parameter-

s for all the training instances in the category-specific in-

stance collection, we follow [20] to adopt the NRSfM ap-

proach [6]. Here the category-specific instance collection

is obtained by cropping the images with the corresponding

class labels by using the rectangles to enclose the annotat-

ed keypoints. Given Kp keypoint correspondences per in-

stance n ∈ 1, 2, · · · , N , where N is the total number of

instances, the NRSfM algorithm is used to maximize the

likelihood of the following formulation:

Pn = snRnWn + 1T Tn + Hn,

Wn = W +
∑

k
Ukz

k
n,

zkn ∼ N (0, 1), Hn,ι ∼ N (0, σ2),

k ∈ [1,m], ι ∈ [1,Kp],

s.t. RnRT
n = I2,

(1)
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where I2 indicates the 2 × 2 identity matrix, Pn is the pro-

vided keypoints which could also be formulated as the 2D

projection of the 3D keypoints Wn with the white noise Hn

and the camera parameters containing the orthographic pro-

jection matrix Rn, scale sn and 2D translation Tn. The Wn

is parameterized as a factored Gaussian with a mean shape

W, m basis vectors U = {U1,U2, · · · ,Um} and the latent

deformation parameters zn. We follow [6] and [20] to adopt

the EM-PPCA algorithm to maximize the likelihood of the

above formulation. With the input data Pn, the algorith-

m infers the 3D keypoints Wn for all training instances as

well as the project function πn ≡ {sn,Rn,Tn}.

2.2. Cluster­Level Learning Curriculum

2.2.1 Two-Stage Clustering

As we know, both common object segmentation and

category-specific 3D shape reconstruction need to acquire

the global shape information from the category-specific

instance collection. However, directly exploring the en-

tire category-specific instance collection can hardly acquire

strong global shape information due to large intra-class vari-

ations in terms of different viewpoints and varying shapes,

textures, and sizes (see Fig. 5). Inspired by the recen-

t work [9], we build the priors based on the viewpoint-

specific visual subgroups through a two-stage clustering s-

trategy in order to gradually decompose the entire image

collection into multiple clusters with much lower intra-

group variations. Consequently, we could easily capture the

meaningful priors from such visual subgroups and use them

to build the global shape information in an effective way.

Specifically, in the first stage, we utilize the estimated

camera parameters {sn,Rn,Tn} to describe each object in-

stance and adopt the K-means clustering method to sepa-

rate the entire category-specific instance collection into Kc

viewpoint-specific clusters, i.e., {C1, C2, · · · , CKc
}. As

shown in Fig. 5, the clusters obtained by this step usually

contain the instances with similar viewpoints. Thus it could

alleviate learning ambiguity caused by viewpoint variation-

s. The next stage is to further alleviate the intra-class varia-

tions caused by other factors, such as the varying shapes,

textures, and sizes. Here we adopt the seed-based clus-

tering approach [9] to generate a set of subgroups within

each viewpoint-specific cluster due to its superior capabili-

ty in grouping visually coherent instances together. In this

stage, for each viewpoint-specific cluster, we first use each

instance as a seed and then build groups by detecting similar

instances from the rest data. This is implemented by train-

ing the exemplar detectors eLDA [16] based on the HOG

feautres of each instance, and then using each detector to

group similar instances by selecting the top Ke detections

with the highest scores. Thus, Ke is the number of instances

in each subgroup. Suppose the c-th viewpoint-specific clus-

ter Cc, c ∈ [1,Kc] contains nc instances, we could finally

obtain Kg =
∑Kc

c=1 nc subgroups {G1, G2, · · · , GKg
} .

2.2.2 Cluster-Level Object Co-Segmentation

After obtaining the subgroups via the proposed two-stage

clustering, we adopt the Seed Segmentation approach [9]

to initialize the segmentation masks of the instances. Ba-

sically, the problem is casted as a classical graph cut prob-

lem [32] to label every pixel in every input image as the

foreground or background, which can be solved by mini-

mizing the energy function with an image-level unary po-

tential term, a cluster-level unary potential term, and a pair-

wise potential term.

2.2.3 Learning Curriculum Generation

To guide the subsequent learning procedure in an effective

way, we design a learning curriculum to gradually adapt the

faithful knowledge from “easy” to “hard” training samples.

This is closely related to the field of curriculum learning,

which was originally proposed in [5] and has been success-

fully used in other applications like object detection and

recognition [8, 38]. In our framework, the “easy” train-

ing samples are the ones with more compact appearance

and complete shape masks, which mainly encode the low-

frequency base shape and thus should be learnt with high-

er priority. One the contrary, the “hard” training samples

are the ones with more diverse appearance and sometimes

noisy shape masks, which might contain the high-frequency

details but need to be learnt in the more “mature” stage.

To measure the appearance compactness of the g-th sub-

group Gg, g ∈ [1,Kg], we train Ke eLDA detectors to score

each instance. Specifically, for the τ -th instance in Gg , we

can obtain Ke detection scores {Sτ,1
g , · · · , Sτ,Ke

g }. Then

we binarize these detection scores to obtain the hit number-

s {hτ,1
g , · · · , hτ,Ke

g } by using the threshold t. Afterward-

s, we use the mean hit numbers of all the instances in Gg

as the compactness score CPg . For obtaining the shape

completeness scores SCg for each subgroup, we compute

the Pearson Linear Correlation Coefficient (PLCC) [27]

of the mask-based distance matrix Dmask
g and the image-

based distance matrix Dimg
g , which is based on the assump-

tion that complete shape masks and the instance images

should show similar feature-similarity distributions in sub-

group with high shape completeness. Specifically, we ex-

tract the HOG features of the shape masks and the instance

images, respectively, and use them to generate Dmask
g and

Dimg
g based on the Euclidean distance. As the HOG fea-

tures extracted from each instance image capture the com-

plete shape/contour information of the corresponding ob-

ject instance, our assumption could work in real cases. Fi-

nally, the learning priority of each subgroup is obtained by

LPg = SCg × CPg .
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Figure 5. Examples to illustrate the generation of the cluster-level learning curriculum.

As shown in Fig. 5, the subgroups with higher learning

priority tend to be the more “easy” ones that should be leant

at earlier iterations. Thus, along this learning curriculum,

we design a five-round learning iteration, where we start by

using the subgroups of the top 30% learning priority to infer

the category-specific 3D shape models and then gradually

involve richer knowledge from more subgroups, i.e., addi-

tional 5% after each iteration, into the learning procedure,

which could improve both the segmentation masks and the

category-specific 3D shape models.

2.3. Joint Common Object Segmentation and
Category­Specific 3D Shape Reconstruction

By discovering the underlying relationship between the

problems of common object segmentation and category-

specific 3D shape reconstruction and observing that they

can provide useful information for each other, we propose to

jointly conduct common object segmentation and category-

specific 3D shape reconstruction in each learning iteration.

2.3.1 Category-specific 3D Shape Reconstruction

Based on the estimated camera projection parameters, key-

point correspondences, and the common object segmen-

tation masks on the selected training subgroups, we fol-

low [20] to build deformable 3D shape models from the ob-

ject silhouettes. Specifically, the 3D shape models are for-

mulated as M = (Sh,V), which consists of a mean shape

Sh and a set of deformation bases V = {V1,V2, · · · ,Vm}.

It could be inferred via the following energy function:

min
Sh,V,α

Elc(Sh,V) + Epd(α,V)

+
∑

n
(Esc(Shn,On, πn) + Ens(Shn)),

s.t. Shn = Sh +
∑

k
αk
nVk,

(2)

where On and Shn denote the instance silhouettes and 3D

shape of the n-th instance, respectively, α is the deformation

parameter. The local consistency term Elc(Sh,V), which is

used to restrict arbitrary deformations, is defined as:

Elc(Sh,V) =
∑

i

∑
j∈N(i)

((‖ Shi − Shj ‖ −δ)2

+
∑

k
‖ Vk,i − Vk,j ‖

2),
(3)

where δ represents the mean squared displacement between

the neighboring points N(·), which encourages all faces to

have similar sizes, Vk,i is the i-th point in the k-th basis,

Shi is the i-th point in Sh.

Ens(Shn) is the normal smoothness term, which places

a cost on the variation of normal directions in a local shape

neighborhood as shape change tends to be locally smooth.

Specifically, it is formulated as:

Ens(Shn) =
∑

i

∑
j∈N(i)

(1−
−→
N n,i ·

−→
N n,j), (4)

where
−→
N n,i denotes the normal for the i-th point in Shn. It

is computed by fitting planes to local point neighborhoods.

Esc(Shn,On, πn) is the shape consistency term:

Esc(Shn,On, πn) =
∑

Chmask(p)>0
△1(p;On)

+
∑

p∈On

△2(p;πn(Shn)),
(5)

where Chmask refers to the Chamfer distance of the binary

mask of silhouette On, △1(p;On) indicates the squared av-

erage distance of pixel p to its nearest neighbors in set On,

△2(p;πn(Shn)) indicates the squared average distance of

pixel p to its two nearest neighbors in the 2D projection πn

of shape Shn, πn(Shn) = snRnShn+1T Tn. The first term

enforces the predicted shape to project inside its silhouette,

while the second term encourages the points on the silhou-

ette to pull nearby projected points towards them.

The last term Epd(α,V) is used to penalize the L2 norm

of the deformation parameter α in order to prevent unnatu-

rally large deformations. Specifically, it is defined as:

Epd(α,V) =
∑

n

∑
k
‖ αk

nVk ‖2F . (6)

As the objective in (2) is highly non-convex and non-

smooth, we follow [12] to initialize mean shape with a soft

visual hull, which is computed by using the selected training

instances. The deformation bases and deformation weights

are initialized randomly.
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2.3.2 Common Object Segmentation Using 3D Shape

Projection Prior

Once we obtain the category-specific 3D shape models, we

use them to provide informative top-down priors for guiding

the common object segmentation in the next learning iter-

ation. Specifically, for each training cluster containing Ke

instance images, our goal is to label each pixel to be fore-

ground lτ,p = 1 or background lτ,p = 0, where p denotes

the pixel location in image τ, τ ∈ [1,Ke]. Such labeling

problem can be solved by minimizing an energy function

over pixels and labels:

EI(τ, p;Aτ ) + EW (τ, p, q; lτ,p, lτ,q)

+ETD(τ, p; SM,PM),
(7)

which mainly contains three terms. The first term

EI(τ, p;Aτ ) is the unary potential from an appearance

model specific to the instance image τ :

EI(τ, p;Aτ ) = − log p(lτ,p; xτ,p, Aτ ), (8)

where p(lτ,p; xτ,p, Aτ ) evaluates how likely a pixel with its

RGB color feature xτ,p is to take label lτ,p, according to the

appearance model Aτ . Here Aτ consists of two Gaussian

mixture models (GMM) over the RGB color space as de-

fined in [9], i.e., one for the foreground (when lτ,p = 1) and

the other for the background (when lτ,p = 0). The appear-

ance model is learnt using the pixels inside and outside the

segmentation masks inferred from the previous iteration.

The second term EW (τ, p, q; lτ,p, lτ,q) is the pairwise

potential defined as:

EW (τ, p, q; lτ,p, lτ,q) = δ(lτ,p 6= lτ,q)e
−β‖xτ,p−xτ,q‖

2

,

(9)

which penalizes two pixels (p and q) when they are assigned

with different labels but having similar features.

The third term ETD(τ, p; SM,PM) is the top-down pri-

or term introduced to help common object segmentation,

which encourages the obtained segmentation masks with-

in each subgroup to be consistent. This is modeled as the

top-down shape priors over pixels:

ETD(τ, p; SM,PM) =

− log p(lτ,p|SM, p)− log p(lτ,p|PM, p),
(10)

where SM indicates the average segmentation mask of the

subgroup. Thus − log p(lτ,p|SM, p) denotes the prior prob-

ability that each pixel belongs to the foreground or back-

ground, given the pixel location and SM. Similarly, PM in-

dicates the average projection shape mask of the subgroup

obtained by using the 3D shape model M = (Sh,V) and

the deformation parameter α from the previous iteration:

PM =
1

τ

∑
τ
(sτRτShτ + 1T Tτ )

Shτ = Sh +
∑

k
Vkα

k
τ ,

(11)

where the parameters {sτ ,Rτ ,Tτ} are obtained from

Sec. 2.1. Thus − log p(lτ,p|PM, p) could effectively intro-

duce the top-down prior provided by the category-specific

3D shape models to common object segmentation, and the

entire energy (7) can be connivently minimized by using the

graph-cut algorithm [32].

3. Experiments

3.1. Experimental Settings

We performed our experiments on the dataset collect-

ed in [29]. It contains 10 rigid object categories selected

from the challenge PASCAL VOC 2012 benchmark [13].

We used the publicly available category-specific keypoints

during the learning phase and adopted the ground-truth seg-

mentation masks for evaluation. For evaluating the expres-

siveness of our learned 3D models, we adopted the 3D CAD

models provided by the PASCAL3D+ dataset [34]. Dur-

ing training, we only used the images containing one in-

stance. The additional localization scheme, which can ap-

ply the trained 3D shapes to segment multiple instances in

singe images, is a promising future direction but beyond the

scope of this paper.

For comprehensively demonstrating the effectiveness of

the proposed approach, we conducted experiments to eval-

uate the obtained category-specific 3D shape models and

the common object segmentation masks. Specifically, we

quantify the quality of the obtained 3D models on the test

set based on two metrics. The first one is the mesh error

metric, which is computed as the Hausdorff distance be-

tween the predicted mesh and the ground-truth mesh [2].

The second one is the depth map error, which is measured

as the mean absolute distance between the reconstructed

depth and the ground truth depth. It can reflect the quality

of the reconstructed visible object surface [29]. For quan-

tifying the quality of the obtained segmentation masks, we

adopted the standard intersection-over-union (IOU) metric

by comparing each segmentation mask and the correspond-

ing ground-truth mask. During our implementation, we set

Kc around 4 and Ke as 3. In addition, we followed the

previous work [29] to set m as 5.

The experiments were run on a 24-core Lenovo Serv-

er with an Intel Xeon CPU of 2.8-GHz and 64-GB RAM.

Our method takes 8.93 hours for training, which is slower

than [29] (4.39 hours). Notice that the latter needs much

more time for manually labelling the ground truth segmen-

tation masks. For test, our method takes 38s per image,

which is the same as [29].

3.2. Evaluation of 3D Shape Reconstruction

In this section, we first conducted experiments to demon-

strate that the proposed framework can effectively learn the

3D shape models from weakly labeled 2D images by com-
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Table 1. Comparing the learnt 3D shape models obtained the proposed approach with the weakly supervised baseline methods in terms of

the Mesh error and Depth error (the lower the better).

Categories→ aero bike boat bus car chair mbike sofa train tv mean

Mesh

RC w/o SG 2.04 4.09 4.29 3.21 2.34 3.36 2.34 6.36 8.83 9.49 4.64

LN w/o CL 1.95 3.40 4.32 3.01 2.43 2.78 2.30 6.61 8.73 9.12 4.46

OURS 1.87 3.00 4.15 2.96 2.24 2.32 2.22 5.83 8.01 8.31 4.09

Depth

RC w/o SG 10.77 14.73 17.13 18.51 11.22 10.72 11.73 26.60 37.50 36.84 19.58

LN w/o CL 10.77 13.79 17.44 16.55 11.21 10.72 11.29 28.00 36.46 29.57 18.58

OURS 10.68 13.53 17.03 18.06 10.28 11.07 11.18 27.32 36.23 26.39 18.18

Table 2. Comparing the learnt 3D shape models obtained the proposed approach with the state-of-the-arts (STAs) in terms of the Mesh

error and Depth error (the lower the better). Notice that all the STAs require stronger supervision than the proposed approach.

Categories→ aero bike boat bus car chair mbike sofa train tv mean

Mesh

Tulsiani’s [29] 1.72 1.78 3.01 1.90 1.77 2.18 1.88 2.13 2.39 3.28 2.20

Vicente’s [31] 1.87 1.87 2.51 2.36 1.41 2.42 1.82 2.31 3.10 3.39 2.31

Twarog’s [30] 3.30 2.52 2.90 3.32 2.82 3.09 2.58 2.53 3.92 3.31 3.03

OURS 1.87 3.00 4.15 2.96 2.24 2.32 2.22 5.83 8.01 8.31 4.09

Depth

Tulsiani’s [29] 9.51 9.27 17.20 12.71 9.94 7.78 9.61 13.70 31.58 8.78 13.01

Vicente’s [31] 10.05 9.28 15.06 18.51 8.14 7.98 9.38 13.71 31.25 8.33 13.17

Barron’s [4] 13.52 13.79 20.78 29.93 22.48 18.59 16.80 18.28 40.56 20.18 21.49

OURS 10.68 13.53 17.03 18.06 10.28 11.07 11.18 27.32 36.23 26.39 18.18

paring our work with the baseline methods of “RC w/o S-

G” and “LN w/o CL”. Specifically, “RC w/o SG” (Recon-

struction without segmentation) directly utilized the initial

co-segmentation masks of all the training images to recon-

struct the category-specific 3D shape models, while ”LN

w/o CL” (learning without curriculum) jointly conducted

category-specific 3D shape reconstruction and common ob-

ject segmentation without adopting the learning curriculum.

The experimental results are reported in Table 1. From Ta-

ble 1, we have two observations: 1) Learning curriculum

is important for coping with the learning ambiguity when

reconstructing the category-specific 3D shapes from weak-

ly labeled 2D images (see the comparison between OURS

and “LN w/o CL”). 2) Category-specific 3D shape recon-

struction and common object segmentation could potential-

ly help each other to improve the learning performance (see

the comparison between “RC w/o SG” and “LN w/o CL”).

We also compared the 3D shape models learnt by us-

ing the proposed approach with those from several state-of-

the-art methods, including Tulsiani’s [29], Vicente’s [31],

Twarog’s [30], and Barron’s [4]. When compared with our

approach, all of the state-of-the-art methods need to addi-

tionally use a large amount of manually labeled segmen-

tation masks. However, from the experimental results in

Table 2, we observe that our approach achieves encour-

aging performance which approaches to some state-of-the-

art methods using much stronger supervision in the cate-

gories like “boat” and “aero”. Our approach even beats Bar-

ron’s [4] in the categories like “car” and “mbike”. Our ap-

proach does not perform well on the categories like “train”

and “sofa”, due to the lack of sufficient training data.

3.3. Evaluation of Common Object Segmentation

In this section, we conducted experiments to demon-

strate that the proposed framework can also segment com-

mon objects effectively by leveraging the learnt 3D shape

models. Firstly, we compared the proposed approach with

another two baseline frameworks, i.e., “RC w/o SG” and

“LN w/o CL”. The experimental results are reported in the

top part of Table 3. As can be seen, the proposed approach

significantly outperforms these two baselines. In addition,

being consistent with the expressiveness of the learned 3D

models, “LN w/o CL” can outperform “RC w/o SG” by

jointly inferring the category-specific 3D shapes and com-

mon object segmentation masks. However, it still achieves

worse performance than the proposed approach due to the

lack of an effective learning curriculum.

We also compared the segmentation masks obtained by

using the obtained 3D shape models to segment the com-

mon objects via (7) with those obtained from three state-

of-the-art (STA) object co-segmentation methods, including

Quan’s [24], Chen’s [9], and Joulin’s [18]. For fair compar-

ison, we also provided the keypoint information to help the

STA methods, i.e., by using these methods to segment on

the cropped instance images. From the experimental results

in the bottom part of Table 3, we observe that the proposed

approach outperforms all the compared STAs, especially for

the categories like “bike” and “chair”. Thus, the experiment

demonstrates the effectiveness by using the top-down priors

from the 3D shape models (even learnt from weakly labeled

images) for helping common object segmentation. Finally,

we show some experimental results in Fig. 6.
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Table 3. Comparing the segmentation results of our approach and other baselines and STAs in terms of the IOU (the higher the better).

Categories→ aero bike boat bus car chair mbike sofa train tv mean

Baselines

RC w/o SG 0.714 0.572 0.669 0.753 0.790 0.673 0.717 0.794 0.678 0.741 0.710

LN w/o CL 0.726 0.596 0.647 0.814 0.756 0.663 0.713 0.784 0.687 0.752 0.714

OURS 0.737 0.614 0.673 0.825 0.794 0.720 0.738 0.865 0.692 0.771 0.743

STAs

Quan’s [24] 0.729 0.481 0.644 0.764 0.788 0.608 0.743 0.831 0.666 0.648 0.690

Chen’s [9] 0.684 0.544 0.585 0.739 0.749 0.650 0.654 0.891 0.670 0.723 0.689

Joulin’s [18] 0.279 0.336 0.239 0.378 0.319 0.236 0.334 0.435 0.363 0.260 0.318

OURS 0.737 0.614 0.673 0.825 0.794 0.720 0.738 0.865 0.692 0.771 0.743

Figure 6. Examples of the 3D shape models (shown in different views) and segmentation masks obtained by the proposed approach.

3.4. Discussion

In this section, we further compared and discussed the

proposed method with the state-of-the art method [31]. Ac-

cording to our statistics (see Sec. 1), annotating figure-

ground segmentations takes 97.9% of the entire human ef-

fort for annotating 2D images. It means that using our ap-

proach can save such amount of human effort for 3D shape

reconstruction, which is significant. We also conducted the

following experiments: 1) We randomly selected 10% data

for testing and used different percentages of data for train-

ing. The blue curve in Fig. 7 demonstrates that our approach

boosts the learning performance along with the increase of

the weakly labeled training data. 2) We also used 20% ful-

ly labeled data (annotated with the additional segmentation

masks) for training 3D shapes using [31] and tested on the

same set of testing data. As shown in Fig. 7, although the

annotation cost (human labor) for 90% weakly labeled data

is actually much less than that for 20% fully labeled data,

training our model based on the former even outperforms

training [31]’s model based on the latter. In a sense, this ex-

periment demonstrates the potential value for applying our

approach in large-scale image data, where human can only

annotate the segmentation masks for a small part of them.

4. Conclusion

This paper has proposed to learn category-specific 3D

shape models under the supervision of weakly labeled 2D

Figure 7. Performance comparison of the proposed approach using

different amount of weakly labeled training data and Tulsiani’s

approach [31] using 20% fully labeled training data.

images without using any manually annotated segmentation

masks. It significantly saves the time and labor for provid-

ing manual annotations, which leads 3D shape modeling to

a unprecedented cheap fashion. In this paper, we imple-

mented it by establishing a novel framework to jointly con-

duct common object segmentation and category-specific 3D

shape reconstruction along a cluster-level learning curricu-

lum. Comprehensive experiments on the PASCAL VOC

dataset have demonstrated the effectiveness of the proposed

framework as well as the potential value for applying it

in large-scale image data. In the future, we will intro-

duce more effective co-saliency detection [37, 36] or co-

segmentation methods [24] in this problem and use some

better 3D object detection pipelines like [23].
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