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Abstract

Zero-shot learning (ZSL) models rely on learning a joint

embedding space where both textual/semantic description

of object classes and visual representation of object images

can be projected to for nearest neighbour search. Despite

the success of deep neural networks that learn an end-to-

end model between text and images in other vision problems

such as image captioning, very few deep ZSL model exists

and they show little advantage over ZSL models that utilise

deep feature representations but do not learn an end-to-end

embedding. In this paper we argue that the key to make

deep ZSL models succeed is to choose the right embedding

space. Instead of embedding into a semantic space or an

intermediate space, we propose to use the visual space as

the embedding space. This is because that in this space,

the subsequent nearest neighbour search would suffer much

less from the hubness problem and thus become more effec-

tive. This model design also provides a natural mechanism

for multiple semantic modalities (e.g., attributes and sen-

tence descriptions) to be fused and optimised jointly in an

end-to-end manner. Extensive experiments on four bench-

marks show that our model significantly outperforms the

existing models.

1. Introduction

A recent trend in developing visual recognition models is

to scale up the number of object categories. However, most

existing recognition models are based on supervised learn-

ing and require a large amount (at least 100s) of training

samples to be collected and annotated for each object class

to capture its intra-class appearance variations [6]. This

severely limits their scalability – collecting daily objects

such as chair is easier, but many other categories are rare

(e.g., a newly identified specie of beetle on a remote pacific

island). None of these models can work with few or even

no training samples for a given class. In contrast, humans

are very good at recognising objects without seeing any vi-

sual samples, i.e., zero-shot learning (ZSL). For example, a

child would have no problem recognising a zebra if she has

seen horses before and also read elsewhere that a zebra is

a horse but with black-and-white stripes on it. Inspired by

humans’ ZSL ability, recently there is a surge of interest in

machine ZSL [2, 47, 22, 1, 37, 43, 10, 31, 11, 14, 24, 46,

34, 4, 13, 3, 5, 48, 49].

A zero-shot learning method relies on the existence of

a labelled training set of seen classes and the knowledge

about how an unseen class is semantically related to the

seen classes. Seen and unseen classes are usually related

in a high dimensional vector space, called semantic space,

where the knowledge from seen classes can be transferred

to unseen classes. The semantic spaces used by most early

works are based on semantic attributes [8, 9, 32]. Given

a defined attribute ontology, each class name can be repre-

sented by an attribute vector and termed as a class prototype.

More recently, semantic word vector space [43, 10] and sen-

tence descriptions/captions [34] have started to gain popu-

larity. With the former, the class names are projected into a

word vector space so that different classes can be compared,

whilst with the latter, a neural language model is required to

provide a vector representation of the description.

With the semantic space and a visual feature representa-

tion of image content, ZSL is typically solved in two steps:

(1) A joint embedding space is learned where both the se-

mantic vectors (prototypes) and the visual feature vectors

can be projected to; and (2) nearest neighbour (NN) search

is performed in this embedding space to match the pro-

jection of an image feature vector against that of an un-

seen class prototype. Most state-of-the-arts ZSL models

[11, 13, 2, 3, 37, 47, 22] use deep CNN features for vi-

sual feature representation; the features are extracted with

pretrained CNN models. They differ mainly in how to learn

the embedding space given the features. They are thus not

end-to-end deep learning models.

In this paper, we focus on end-to-end learning of a deep

embedding based ZSL model which offers a number of

advantages. First, end-to-end optimisation can potentially

lead to learning a better embedding space. For example,

if sentence descriptions are used as the input to a neural

language model such as recurrent neural networks (RNNs)

for computing a semantic space, both the neural language
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model and the CNN visual feature representation learning

model can be jointly optimised in an end-to-end fashion.

Second, a neural network based joint embedding model

offers the flexibility for addressing various transfer learn-

ing problems such as multi-task learning and multi-domain

learning [46]. Third, when multiple semantic spaces are

available, this model can provide a natural mechanism for

fusing the multiple modalities. However, despite all these

intrinsic advantages, in practice, the few existing end-to-end

deep models for ZSL in the literature [24, 10, 43, 46, 34]

fail to demonstrate these advantages and yield only weaker

or merely comparable performances on benchmarks when

compared to non-deep learning alternatives.

We argue that the key to the success of a deep embed-

ding model for ZSL is the choice of the embedding space.

Existing models, regardless whether they are deep or non-

deep, choose either the semantic space [22, 13, 43, 10] or an

intermediate embedding space [24, 2, 37, 11] as the embed-

ding space. However, since the embedding space is of high

dimension and NN search is to be performed there, the hub-

ness problem is inevitable [33], that is, a few unseen class

prototypes will become the NNs of many data points, i.e.,

hubs. Using the semantic space as the embedding space

means that the visual feature vectors need to be projected

into the semantic space which will shrink the variance of the

projected data points and thus aggravate the hubness prob-

lem [33, 7].

In this work, we propose a novel deep neural network

based embedding model for ZSL which differs from exist-

ing models in that: (1) To alleviate the hubness problem,

we use the output visual feature space of a CNN subnet

as the embedding space. The resulting projection direction

is from a semantic space, e.g., attribute or word vector, to

a visual feature space. Such a direction is opposite to the

one adopted by most existing models. We provide a theo-

retical analysis and some intuitive visualisations to explain

why this would help us counter the hubness problem. (2) A

simple yet effective multi-modality fusion method is devel-

oped in our neural network model which is flexible and im-

portantly enables end-to-end learning of the semantic space

representation.

The contributions of this work are as follows: (i) A novel

deep embedding model for ZSL has been formulated which

differs from existing models in the selection of embedding

space. (ii) A multi-modality fusion method is further de-

veloped to combine different semantic representations and

to enable end-to-end learning of the representations. Exten-

sive experiments carried out on four benchmarks including

AwA [22], CUB [45] and large scale ILSVRC 2010 and

ILSVRC 2012 [6] show that our model beats all the state-

of-the-art models presented to date, often by a large margin.

2. Related Work

Semantic space Existing ZSL methods differ in what se-

mantic spaces are used: typically either attribute [8, 9, 32],

word vector [43, 10], or text description [34]. It has been

shown that an attribute space is often more effective than

a word vector space [2, 47, 22, 37]. This is hardly sur-

prising as additional attribute annotations are required for

each class. Similarly, state-of-the-art results on fine-grained

recognition tasks have been achieved in [34] using im-

age sentence descriptions to construct the semantic space.

Again, the good performance is obtained at the price of

more manual annotation: 10 sentence descriptions need to

be collected for each image, which is even more expensive

than attribute annotation. This is why the word vector se-

mantic space is still attractive: it is ‘free’ and is the only

choice for large scale recognition with many unseen classes

[13]. In this work, all three semantic spaces are considered.

Fusing multiple semantic spaces Multiple semantic

spaces are often complementary to each other; fusing them

thus can potentially lead to improvements in recognition

performance. Score-level fusion is perhaps the simplest

strategy [14]. More sophisticated multi-view embedding

models have been proposed. Akata et al. [2] learn a joint

embedding semantic space between attribute, text and hier-

archical relationship which relies heavily on hyperparame-

ter search. Multi-view canonical correlation analysis (CCA)

has also been employed [11] to explore different modali-

ties of testing data in a transductive way. Differing from

these models, our neural network based model has an em-

bedding layer to fuse different semantic spaces and connect

the fused representation with the rest of the visual-semantic

embedding network for end-to-end learning. Unlike [11], it

is inductive and does not require to access the whole test set

at once.

Embedding model Existing methods also differ in the

visual-semantic embedding model used. They can be cate-

gorised into two groups: (1) The first group learns a map-

ping function by regression from the visual feature space to

the semantic space with pre-computed features [22, 13] or

deep neural network regression [43, 10]. For these embed-

ding models, the semantic space is the embedding space.

(2) The second group of models implicitly learn the rela-

tionship between the visual and semantic space through a

common intermediate space, again either with a neural net-

work formulation [24, 46] or without [24, 2, 37, 11]. The

embedding space is thus neither the visual feature space,

nor the semantic space. We show in this work that using

the visual feature space as the embedding space is intrinsi-

cally advantageous due to its ability to alleviate the hubness

problem.

Deep ZSL model All recent ZSL models use deep CNN

features as inputs to their embedding model. However, few

are deep end-to-end models. Existing deep neural network
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based ZSL works [10, 43, 24, 46, 34] differ in whether they

use the semantic space or an intermediate space as the em-

bedding space, as mentioned above. They also use different

losses. Some of them use margin-based losses [10, 46, 34].

Socher et al [43] choose a euclidean distance loss. Ba et al

[24] takes a dot product between the embedded visual fea-

ture and semantic vectors and consider three training losses,

including a binary cross entropy loss, hinge loss and Eu-

clidean distance loss. In our model, we find that the least

square loss between the two embedded vectors is very effec-

tive and offers an easy theoretical justification as for why it

copes with the hubness problem better. The work in [34]

differs from the other models in that it integrates a neu-

ral language model into its neural network for end-to-end

learning of the embedding space as well as the language

model. In additional to the ability of jointly learning the

neural language model and embedding model, our model

is capable of fusing text description with other semantic

spaces and achieves better performance than [34].

The hubness problem The phenomenon of the presence

of ‘universal’ neighbours, or hubs, in a high-dimensional

space for nearest neighbour search was first studied by

Radovanovic et al. [26]. They show that hubness is an inher-

ent property of data distributions in a high-dimensional vec-

tor space, and a specific aspect of the curse of dimension-

ality. A couple of recent studies [7, 41] noted that regres-

sion based zero-shot learning methods suffer from the hub-

ness problem and proposed solutions to mitigate the hub-

ness problem. Among them, the method in [7] relies on

the modelling of the global distribution of test unseen data

ranks w.r.t. each class prototypes to ease the hubness prob-

lem. It is thus transductive. In contrast, the method in [41] is

inductive: It argued that least square regularised projection

functions make the hubness problem worse and proposed

to perform reverse regression, i.e., embedding class proto-

types into the visual feature space. Our model also uses the

visual feature space as the embedding space but achieve so

by using an end-to-end deep neural network which yields

far superior performance on ZSL.

3. Methodology

3.1. Problem definition

Assume a labelled training set of N training samples is

given as Dtr = {(Ii, y
u
i , t

u
i ), i = 1, . . . , N}, with associ-

ated class label set Ttr, where Ii is the i-th training image,

yu
i ∈ R

L×1 is its corresponding L-dimensional semantic

representation vector, tui ∈ Ttr is the u-th training class la-

bel for the i-th training image. Given a new test image Ij ,

the goal of ZSL is to predict a class label tvj ∈ Tte, where tvj
is the v-th test class label for the j-th test instance. We have

Ttr ∩ Tte = ∅, i.e., the training (seen) classes and test (un-

seen) classes are disjoint. Note that each class label tu or tv

is associated with a pre-defined semantic space representa-

tion yu or yv (e.g. attribute vector), referred to as semantic

class prototypes. For the training set, yu
i is given because

each training image Ii is labelled by a semantic representa-

tion vector representing its corresponding class label tuj .

3.2. Model architecture

The architecture of our model is shown in Fig. 1. It has

two branches. One branch is the visual encoding branch,

which consists of a CNN subnet that takes an image Ii as

input and outputs a D-dimensional feature vector φ(Ii) ∈
R

D×1. This D-dimensional visual feature space will be

used as the embedding space where both the image con-

tent and the semantic representation of the class that the

image belongs to will be embedded. The semantic em-

bedding is achieved by the other branch which is a seman-

tic encoding subnet. Specifically, it takes a L-dimensional

semantic representation vector of the corresponding class

yu
i as input, and after going through two fully connected

(FC) linear + Rectified Linear Unit (ReLU) layers outputs

a D-dimensional semantic embedding vector. Each of the

FC layer has a l2 parameter regularisation loss. The two

branches are linked together by a least square embedding

loss which aims to minimise the discrepancy between the

visual feature φ(Ii) and its class representation embedding

vector in the visual feature space. With the three losses, our

objective function is as follows:

L(W1,W2) =
1

N

N∑

i=1

||φ(Ii)− f1(W2f1(W1y
u
i ))||

2

+λ(||W1||
2 + ||W2||

2) (1)

where W1 ∈ R
L×M are the weights to be learned in the

first FC layer and W2 ∈ R
M×D for the second FC layer.

λ is the hyperparameter weighting the strengths of the two

parameter regularisation losses against the embedding loss.

We set f1(�) to be the Rectified Linear Unit (ReLU) which

introduces nonlinearity in the encoding subnet [21].

After that, the classification of the test image Ij in the

visual feature space can be achieved by simply calculating

its distance to the embed prototypes:

v = argmin
v
D(φ(Ij), f1(W2f1(W1y

v))) (2)

whereD is a distance function, and yv is the semantic space

vector of the v-th test class prototype.

3.3. Multiple semantic space fusion

As shown in Fig. 1, we can consider the semantic rep-

resentation and the first FC and ReLU layer together as a

2023



FC 
ReLU 

loss 

Backward  
layer FC 

ReLU 
Multimodal 

Tanh 

Multimodal 
Tanh 

… 
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… 

Figure 1. Illustration of the network architecture of our deep embedding model. The detailed architecture of the semantic representation

unit in the left branch (semantic encoding subnet) is given in (a), (b) and (c) which correspond to the single modality (semantic space)

case, the multiple (two) modality case, and the case where one of the modalities is text description. For the case in (c), the semantic

representation itself is a neural network (RNN) which is learned end-to-end with the rest of the network.

semantic representation unit. When there is only one se-

mantic space considered, it is illustrated in Fig. 1(a). How-

ever, when more than one semantic spaces are used, e.g., we

want to fuse attribute vector with word vector for semantic

representation of classes, the structure of the semantic rep-

resentation unit is changed slightly, as shown in Fig. 1(b).

More specifically, we map different semantic representa-

tion vectors to a multi-modal fusion layer/space where they

are added. The output of the semantic representation unit

thus becomes:

f2(W
(1)
1 · y

u1

i +W
(2)
1 · y

u2

i ), (3)

where yu1

i ∈ R
L1×1 and yu2

i ∈ R
L2×1 denote two differ-

ent semantic space representations (e.g., attribute and word

vector), “+” denotes element-wise sum, W
(1)
1 ∈ R

L1×M

and W
(2)
1 ∈ R

L2×M are the weights which will be learned.

f2(�) is the element-wise scaled hyperbolic tangent func-

tion [23]:

f2(x) = 1.7159 · tanh(
2

3
x). (4)

This activation function forces the gradient into the most

non-linear value range and leads to a faster training process

than the basic hyperbolic tangent function.

3.4. Bidirectional LSTM encoder for description

The structure of the semantic representation unit needs

to be changed again, when text description is avalialbe for

each training image (see Fig. 1(c)). In this work, we use

a recurrent neural network (RNN) to encode the content of

a text description (a variable length sentence) into a fixed-

length semantic vector. Specifically, given a text descrip-

tion of T words, x = (x1, . . . , xT ) we use a Bidirectional

RNN model [39] to encode them. For the RNN cell, the

Long-Shot Term Memory (LSTM) [17] units are used as

the recurrent units. The LSTM is a special kind of RNN,

which introduces the concept of gating to control the mes-

sage passing between different times steps. In this way, it

could potentially model long term dependencies. Following

[16], the model has two types of states to keep track of the

historical records: a cell state c and a hidden state h. For a

particular time step t, they are computed by integrating the

current inputs xt and previous state (ct−1, ht−1). During

the integrating, three types of gates are used to control the

messaging passing: an input gate it, a forget gate ft and an

output gate ot.

We omit the formulation of the bidirectional LSTM here

and refer the readers to [16, 15] for details. With the bidirec-

tional LSTM model, we use the final output as our encoded

semantic feature vector to represent the text description:

f(W−→
h
·
−→
h +W←−

h
·
←−
h ), (5)

where
−→
h denote the forward final hidden state,

←−
h denote

the backward final hidden state. f(�) = f1(�) if text descrip-

tion is used only for semantic space unit, and f(�) = f2(�)
if other semantic space need to be fused (Sec. 3.3). W−→

h

and W←−
h

are the weights which will be learned.

In the testing stage, we first extract text encoding from

test descriptions and then average them per-class to form the

test prototypes as in [34]. Note that since our ZSL model

is a neural network, it is possible now to learn the RNN

encoding subnet using the training data together with the

rest of the network in an end-to-end fashion.

3.5. The hubness problem

How does our model deal with the hubness problem?

First we show that our objective function is closely related
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to that of the ridge regression formulation. In particular, if

we use the matrix form and write the outputs of the semantic

representation unit as A and the outputs of the CNN visual

feature encoder as B, and ignore the ReLU unit for now,

our training objective becomes

L(W) = ||B−WA||2F + λ||W||2F , (6)

which is basically ridge regression. It is well known

that ridge regression has a closed-form solution W =
BA⊤(AA⊤ + λI)−1. Thus we have:

||WA||2 = ||BA⊤(AA⊤ + λI)−1A||2

≤ ||B||2||A
⊤(AA⊤ + λI)−1A||2 (7)

It can be further shown that

||A⊤(AA⊤ + λI)−1A||2 =
σ2

σ2 + λ
≤ 1. (8)

Where σ is the largest singular value of A. So we have

||WA||2 ≤ ||B||2. This means the mapped source data

||WA||2 are likely to be closer to the origin of the space

than the target data ||B||2, with a smaller variance.

feature

prototype

feature

prototype

(a) S→ V (b) V→ S

Figure 2. Illustration of the effects of different embedding direc-

tions on the hubness problem. S: semantic space, and V: visual

feature space. Better viewed in colour.

Why does this matter in the context of ZSL? Figure 2

gives an intuitive explanation. Specifically, assuming the

feature distribution is uniform in the visual feature space,

Fig. 2(a) shows that if the projected class prototypes are

slightly shrunk towards the origin, it would not change how

hubness problem arises – in other words, it at least does not

make the hubness issue worse. However, if the mapping di-

rection were to be reversed, that is, we use the semantic vec-

tor space as the embedding space and project the visual fea-

ture vectors φ(I) into the space, the training objective is still

ridge regression-like, so the projected visual feature repre-

sentation vectors will be shrunk towards the origin as shown

in Fig. 2(b). Then there is an adverse effect: the semantic

vectors which are closer to the origin are more likely to be-

come hubs, i.e. nearest neighbours to many projected visual

feature representation vectors. This is confirmed by our ex-

periments (see Sec. 4) which show that using which space

as the embedding space makes a big difference in terms of

the degree/seriousness of the resultant hubness problem and

therefore the ZSL performance.

Measure of hubness To measure the degree of hubness

in a nearest neighbour search problem, the skewness of the

(empirical) Nk distribution is used, following [33, 41]. The

Nk distribution is the distribution of the number Nk(i) of

times each prototype i is found in the top k of the rank-

ing for test samples (i.e. their k-nearest neighbour), and its

skewness is defined as follows:

(Nkskewness) =

∑l

i=1(Nk(i)− E[Nk])
3/l

V ar[Nk]
3

2

, (9)

where l is the total number of test prototypes. A large skew-

ness value indicates the emergence of more hubs.

3.6. Relationship to other deep ZSL models

Let’s now compare the proposed model with the related

end-to-end neural network based models: DeViSE [10],

Socher et al. [43], MTMDL [46], and Ba et al. [24]. Their

model structures fall into two groups. In the first group (see

Fig. 3(a)), DeViSE [10] and Socher et al. [43] map the CNN

visual feature vector to a semantic space by a hinge ranking

loss or least square loss. In contrast, MTMDL [46] and

Ba et al. [24] fuse visual space and semantic space to a

common intermediate space and then use a hinge ranking

loss or a binary cross entropy loss (see Fig. 3(b)). For both

groups, the learned embedding model will make the vari-

ance of WA to be smaller than that of B, which would thus

make the hubness problem worse. In summary, the hubness

will persist regardless what embedding model is adopted, as

long as NN search is conducted in a high dimensional space.

Our model does not worsen it, whist other deep models do,

which leads to the performance difference as demonstrated

in our experiments.

… 

CNN 

Loss 

… …

Semantic 

…

Semantic 
CNN 

Loss 

Dot product 

… … 

(a) [10, 43] (b) [46, 24]

Figure 3. The existing deep ZSL models’ architectures fall into

two groups.
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4. Experiments

4.1. Dataset and settings

Datasets Four benchmarks are selected: AwA (Ani-

mals with Attributes) [22] consists of 30,745 images of 50

classes. It has a fixed split for evaluation with 40 training

classes and 10 test classes. CUB (CUB-200-2011) [45] con-

tains 11,788 images of 200 bird species. We use the same

split as in [2] with 150 classes for training and 50 disjoint

classes for testing. ImageNet (ILSVRC) 2010 1K [38]

consists of 1,000 categories and more than 1.2 million im-

ages. We use the same training/test split as [27, 10] which

gives 800 classes for training and 200 classes for testing.

ImageNet (ILSVRC) 2012/2010: for this dataset, we use

the same setting as [13], that is, ILSVRC 2012 1K is used

as the training seen classes, while 360 classes in ILSVRC

2010 which do not appear in ILSVRC 2012 are used as the

test unseen classes.

Semantic space For AwA, we use the continuous 85-

dimension class-level attributes provided in [22], which

have been used by all recent works. For the word vector

space, we use the 1,000 dimension word vectors provided

in [11, 12]. For CUB, continuous 312-dimension class-level

attributes and 10 descriptions per image provided in [34] are

used. For ILSVRC 2010 and ILSVRC 2012, we trained

a skip-gram language model [28, 29] on a corpus of 4.6M

Wikipedia documents to extract 1,000 word vectors for each

class.

Model setting and training Unless otherwise specified,

We use the Inception-V2 [44, 19] as the CNN subnet of

our model in all our experiments, the top pooling units are

used for visual feature space with dimension D = 1, 024.

The CNN subnet is pre-trained on ILSVRC 2012 1K classi-

fication without fine-tuning, same as the recent deep ZSL

works [24, 34]. For fair comparison with DeViSE [10],

ConSE [31] and AMP [14] on ILSVRC 2010, we also use

the Alexnet [21] architecture and pretrain it from scratch us-

ing the 800 training classes. All input images are resized to

224 × 224. Fully connected layers of our model are ini-

tialised with random weights for all of our experiments.

Adam [20] is used to optimise our model with a learning

rate of 0.0001 and a minibatch size of 64. The model is

implemented based on Tensorflow.

Parameter setting In the semantic encoding branch of

our network, the output size of the first FC layer M is

set to 300 and 700 for AwA and CUB respectively when

a single semantic space is used (see Fig. 1(a)). Specifi-

cally, we use one FC layer for ImageNet in our experiments.

For multiple semantic space fusion, the multi-modal fusion

layer output size is set to 900 (see Fig. 1(b)). When the

semantic representation was encoded from descriptions for

the CUB dataset, a bidirectional LSTM encoding subnet is

employed (see Fig. 1(c)). We use the BasicLSTMCell

in Tensorflow as our RNN cell and employ ReLU as acti-

vation function. We set the input sequence length to 30;

longer text inputs are cut off at this point and shorter ones

are zero-padded. The word embedding size and the number

of LSTM unit are both 512. Note that with this LSTM sub-

net, RMSprop is used in the place of Adam to optimise the

whole network with a learning rate of 0.0001, a minibatch

size of 64 and gradient clipped at 5. The loss weighting

factor λ in Eq. (1) is searched by five-fold cross-validation.

Specifically, 20% of the seen classes in the training set are

used to form a validation set.

4.2. Experiments on AwA and CUB

Competitors Numerous existing works reported results

on these two relatively small-scale datasets. Among them,

only the most competitive ones are selected for compari-

son due to space constraint. The selected 13 can be cate-

gorised into the non-deep model group and the deep model

group. All the non-deep models use ImageNet pretrained

CNN to extract visual features. They differ in which CNN

model is used: FO indicates that overfeat [40] is used; FG

for GoogLeNet [44]; and FV for VGG net [42]. The sec-

ond group are all neural network based with a CNN sub-

net. For fair comparison, we implement the models in

[10, 43, 46, 24] on AwA and CUB with Inception-V2 as

the CNN subnet as in our model and [34]. The compared

methods also differ in the semantic spaces used. Attributes

(A) are used by all methods; some also use word vector

(W) either as an alternative to attributes, or in conjunction

with attributes (A+W). For CUB, recently the instance-level

sentence descriptions (D) are used [34]. Note that only

inductive methods are considered. Some recent methods

[49, 11, 12] are tranductive in that they use all test data at

once for model training, which gives them a big unfair ad-

vantage.

Comparative results on AwA From Table 1 we can

make the following observations: (1) Our model achieves

the best results either with attribute or word vector. When

both semantic spaces are used, our result is further im-

proved to 88.1%, which is 7.6% higher than the best result

reported so far [48]. (2) The performance gap between our

model to the existing neural network based models are par-

ticular striking. In fact, the four models [10, 43, 46, 24]

achieve weaker results than most of the compared non-deep

models that use deep features only and do not perform end-

to-end training. The verify our claim that selecting the ap-

propriate visual-semantic embedding space is critical for

the deep embedding models to work. (3) As expected,

the word vector space is less informative than the attribute

space (86.7% vs. 78.8%) even though our word vector space

alone result already beats all published results except for

one [48]. Nevertheless, fusing the two spaces still brings

some improvement (1.4%).
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Comparative results on CUB Table 1 shows that on the

fine-grained dataset CUB, our model also achieves the best

result. In particular, with attribute only, our result of 58.3%

is 3.8% higher than the strongest competitor [4]. The best

result reported so far, however, was obtained by the neu-

ral network based DS-SJE [34] at 56.8% using sentence

descriptions. It is worth pointing out that this result was

obtained using a word-CNN-RNN neural language model,

whilst our model uses a bidirectional LSTM subnet, which

is easier to train end-to-end with the rest of the network.

When the same LSTM based neural language model is used,

DS-SJE reports a lower accuracy of 53.0%. Further more,

with attribute only, the result of DS-SJE (50.4%) is much

lower than ours. This is significant because annotating at-

tributes for fine-grained classes is probably just about man-

ageable; but annotating 10 descriptions for each images is

unlikely to scale to large number of classes. It is also evi-

dent that fusing attribute with descriptions leads to further

improvement.

Model F SS AwA CUB

AMP [14] FO A+W 66.0 -

SJE [2] FG A 66.7 50.1

SJE [2] FG A+W 73.9 51.7

ESZSL [37] FG A 76.3 47.2

SSE-ReLU [47] FV A 76.3 30.4

JLSE [48] FV A 80.5 42.1

SS-Voc [13] FO A/W 78.3/68.9 -

SynC-struct [4] FG A 72.9 54.5

SEC-ML [3] FV A 77.3 43.3

DeViSE [10] NG A/W 56.7/50.4 33.5

Socher et al. [43] NG A/W 60.8/50.3 39.6

MTMDL [46] NG A/W 63.7/55.3 32.3

Ba et al. [24] NG A/W 69.3/58.7 34.0

DS-SJE [34] NG A/D - 50.4/56.8

Ours NG A/W(D) 86.7/78.8 58.3/53.5

Ours NG A+W(D) 88.1 59.0

Table 1. Zero-shot classification accuracy (%) comparison on

AwA and CUB. SS: semantic space; A: attribute space; W: se-

mantic word vector space; D: sentence description (only available

for CUB). F: how the visual feature space is computed; For non-

deep models: FO if overfeat [40] is used; FG for GoogLeNet [44];

and FV for VGG net [42]. For neural network based methods, all

use Inception-V2 (GoogLeNet with batch normalisation) [44, 19]

as the CNN subnet, indicated as NG.

4.3. Experiments on ImageNet

Comparative results on ILSVRC 2010 Compared to

AwA and CUB, far fewer works report results on the large-

scale ImageNet ZSL tasks. We compare our model against

8 alternatives on ILSVRC 2010 in Table 2, where we use

hit@5 rather than hit@1 accuracy as in the small dataset

experiments. Note that existing works follow two set-

tings. Some of them [30, 18] use existing CNN model

(e.g. VGG/GoogLeNet) pretrained from ILSVRC 2012 1K

classes to initialise their model or extract deep visual fea-

ture. Comparing to these two methods under the same set-

ting, our model gives 60.7%, which beats the nearest rival

PDDM [18] by over 12%. For comparing with the other 6

methods, we follow their setting and pretrain our CNN sub-

net from scratch with Alexnet [21] architecture using the

800 training classes for fair comparison. The results show

that again, significant improvement has been obtained with

our model.

Model hit@5

ConSE [31] 28.5

DeViSE [10] 31.8

Mensink et al. [27] 35.7

Rohrbach [36] 34.8

PST [35] 34.0

AMP [14] 41.0

Ours 46.7

Gaussian Embedding [30] 45.7

PDDM [18] 48.2

Ours 60.7

Table 2. Comparative results (%) on ILSVRC 2010

Comparative results on ILSVRC 2012/2010 Even

fewer published results on this dataset are available. Table 3

shows that our model clearly outperform the state-of-the-art

alternatives by a large margin.

Model hit@1 hit@5

ConSE [31] 7.8 15.5

DeViSE [10] 5.2 12.8

AMP [14] 6.1 13.1

SS-Voc [13] 9.5 16.8

Ours 11.0 25.7

Table 3. Comparative results (%) on ILSVRC 2012/2010.

4.4. Further analysis

Importance of embedding space selection We argued

that the key for an effective deep embedding model is the

use of the CNN output visual feature space rather than the

semantic space as the embedding space. In this experiment,

we modify our model in Fig. 1 by moving the two FC lay-

ers from the semantic embedding branch to the CNN feature

extraction branch so that the embedding space now becomes

the semantic space (attributes are used). Table 4 shows that

by mapping the visual features to the semantic embedding

space, the performance on AwA drops by 26.1% on AwA,

highlighting the importance of selecting the right embed-

ding space. We also hypothesised that using the CNN visual

feature space as the embedding layer would lead to less hub-
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Figure 4. Visualisation of the distribution of the 10 unseen class images in the two embedding spaces on AwA using t-SNE [25]. Different

classes as well as their corresponding class prototypes (in squares) are shown in different colours. Better viewed in colour.

ness problem. To verify that we measure the hubness using

the skewness score (see Sec. 3.5). Table 5 shows clearly that

the hubness problem is much more severe when the wrong

embedding space is selected. We also plot the data distri-

bution of the 10 unseen classes of AwA together with the

prototypes. Figure 4 suggests that with the visual feature

space as the embedding space, the 10 classes form com-

pact clusters and are near to their corresponding prototypes,

whilst in the semantic space, the data distributions of differ-

ent classes are much less separated and a few prototypes are

clearly hubs causing miss-classification.

Loss Visual → Semantic Semantic → Visual

Least square loss 60.6 86.7

Hinge loss 57.7 72.8

Table 4. Effects of selecting different embedding space and dif-

ferent loss functions on zero-shot classification accuracy (%) on

AwA.

N1 skewness AwA CUB

Visual → Semantic 0.4162 8.2697

Semantic → Visual -0.4834 2.2594

Table 5. N1 skewness score on AwA and CUB with different em-

bedding space.

Neural network formulation Can we apply the idea of

using visual feature space as embedding space to other mod-

els? To answer this, we consider a very simple model based

on linear ridge regression which maps from the CNN fea-

ture space to the attribute semantic space or vice versa. In

Table 6, we can see that even for such a simple model, very

impressive results are obtained with the right choice of em-

bedding space. The results also show that with our neural

network based model, much better performance can be ob-

tained due to the introduced nonlinearity and its ability to

learn end-to-end.

Model AwA CUB

Linear regression (V → S) 54.0 40.7

Linear regression (S → V) 74.8 45.7

Ours 86.7 58.3

Table 6. Zero-shot classification accuracy (%) comparison with

linear regression on AwA and CUB.

Choices of the loss function As reviewed in Sec. 2, most

existing ZSL models use either margin based losses or bi-

nary cross entropy loss to learn the embedding model. In

this work, least square loss is used. Table 4 shows that

when the semantic space is used as the embedding space,

a slightly inferior result is obtained using a hinge ranking

loss in place of least square loss in our model. However,

least square loss is clearly better when the visual feature

space is the embedding space.

5. Conclusion

We have proposed a novel deep embedding model for

zero-shot learning. The model differs from existing ZSL

model in that it uses the CNN output feature space as the

embedding space. We hypothesise that this embedding

space would lead to less hubness problem compared to the

alternative selections of embedding space. Further more,

the proposed model offers the flexible of utilising multiple

semantic spaces and is capable of end-to-end learning when

the semantic space itself is computed using a neural net-

work. Extensive experiments show that our model achieves

state-of-the-art performance on a number of benchmark

datasets and validate the hypothesis that selecting the cor-

rect embedding space is the key for achieving the excellent

performance.
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