
Mining Object Parts from CNNs via Active Question-Answering

Quanshi Zhang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu

University of California, Los Angeles

Abstract

Given a convolutional neural network (CNN) that is pre-

trained for object classification, this paper proposes to use

active question-answering to semanticize neural patterns in

conv-layers of the CNN and mine part concepts. For each

part concept, we mine neural patterns in the pre-trained

CNN, which are related to the target part, and use these

patterns to construct an And-Or graph (AOG) to represen-

t a four-layer semantic hierarchy of the part. As an in-

terpretable model, the AOG associates different CNN units

with different explicit object parts. We use an active human-

computer communication to incrementally grow such an

AOG on the pre-trained CNN as follows. We allow the

computer to actively identify objects, whose neural patterns

cannot be explained by the current AOG. Then, the com-

puter asks human about the unexplained objects, and uses

the answers to automatically discover certain CNN patterns

corresponding to the missing knowledge. We incrementally

grow the AOG to encode new knowledge discovered during

the active-learning process. In experiments, our method ex-

hibits high learning efficiency. Our method uses about 1/6–

1/3 of the part annotations for training, but achieves simi-

lar or better part-localization performance than fast-RCNN

methods.

1. Introduction

Convolutional neural networks (CNNs) [17, 16] have

been trained to achieve near human-level performance on

object detection. However, CNN methods still face two is-

sues in real-world applications. First, many visual tasks re-

quire detailed interpretations of object structures for hierar-

chical understanding of objects (e.g. part localization and

parsing). This is beyond the detection of object bounding

boxes. Second, weakly-supervised learning is also a diffi-

cult problem for CNNs. Unlike data-rich applications (e.g.

pedestrian/vehicle detection), many tasks require modeling

certain object parts on the fly. For example, people may

hope to use only a few examples to quickly teach a robot

how to grasp a certain type of object parts for an occasional

task.
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Figure 1. Semanticizing knowledge in a pre-trained CNN via ac-

tive question-answering (QA). We mine latent patterns from the

CNN to explain certain object parts, and organize such pattern-

s into a semantic hierarchy. Our method automatically identifies

objects whose parts cannot be explained by part templates in the

current AOG, asks about the objects, and uses the answers to mine

patterns from these objects. The mined patterns represent new part

templates, and are organized as new branches in the AOG.

In this study, we propose a new strategy to model a cer-

tain object part using a few part annotations, i.e. using an

active question-answering (QA) process to mine latent pat-

terns that are related to the part from a pre-trained CNN.

We use an And-Or graph (AOG) as an interpretable model

to associate these patterns with the target part.

We develop our method based on the following three

ideas: 1) When a CNN is pre-trained using objects of a cat-

egory with object-box annotations, most appearance knowl-

edge of the target category may have been encoded in conv-

layers of the CNN. 2) Our task is to mine latent patterns

from complex neural activations in the conv-layers. Each

pattern individually acts as a detector of a certain region of

an object. We use the mined regional patterns to construct

an AOG to represent the target part. 3) Because the AOG

represents the part’s neural patterns with clear semantic hi-

erarchy, we can start an active QA to incrementally grow

new AOG branches to encode new part templates, so as to

enrich the knowledge in the AOG.

More specifically, during the active QA, the computer

discovers objects whose neural activations cannot be ex-

plained by the current AOG and asks human users for su-
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pervision. We use the answers to grow new AOG branches

for new part templates given in answers. Active QA makes

the part knowledge efficiently learned with very limited hu-

man supervision.

CNN generalization: Before we introduce inputs and

outputs of our QA-based learning, we clarify our target of

CNN generalization, i.e. growing semantic AOGs to ex-

plain semantic hierarchy hidden within the conv-layers of a

pre-trained CNN.

As shown in Fig 2, the AOG has four layers, which en-

code a clear semantic hierarchy ranging from semantic part,

part templates, latent patterns, to CNN units. In the AOG,

we use AND nodes to represent compositional regions of

a part, and use OR nodes to encode a list of alternative

template/deformation candidates for a local region. The top

part node (OR node) uses its children to represent a num-

ber of template candidates for the part. Each part template

(AND node) in the second layer has a number of children

as latent patterns to represent its constituent regions (e.g. an

eye in the face part). Each latent pattern in the third layer

(OR node) naturally corresponds to a certain range of unit-

s within a CNN conv-slice. We select a CNN unit within

this range to account for geometric deformation of the la-

tent pattern.

Note that we do not further fine-tune the original convo-

lutional weights within the pre-trained CNN. This allows us

to continuously grow AOGs for different parts, without the

risk of model drifting.

Inputs and outputs of QA-based learning: Given a

pre-trained CNN and its training samples (i.e. object images

without any part annotations), we incrementally grow AOG

branches for the target part. In each step of QA, we let the

CNN use the current AOG to localize the target part among

all the unannotated images. Our method actively identifies

object images, whose parts cannot be well explained by the

AOG. Among all the unexplained objects, our method pre-

dicts the potential gain of asking about each unexplained

object, and thus determines a best sequence of questions

for QA. As in Fig. 3, the user is able to give five types of

answers to explicitly guide the AOG growth. Given each

specific answer, the computer may refine an existing part

template or mine latent patterns to construct a new AOG

branch for a new part template.

Learning from weak supervision: Unlike previous

end-to-end batch learning, there are two mechanisms to

ensure the stability of weakly-supervised learning. 1) We

transfer patterns in a pre-trained object-level CNN to the

target part concept, instead of learning all knowledge from

scratch. These patterns are supposed to consistently de-

scribe the same part region among different object images.

The pattern-mining process purifies the CNN knowledge for

better representation of the target part. 2) We use active QA

to collect training samples, in order to avoid wasting human

labor of annotating object parts that can be well explained

by the AOG.

We use object-level annotations for pre-training, con-

sidering the following two facts: 1) Only a few dataset-

s [6, 42] provide part annotations, and most benchmark

datasets [13, 26, 20] mainly have annotations of objec-

t bounding boxes. 2) More crucially, different applications

may focus on different object parts, and it is impractical to

annotate a large number of parts for each specific task.

Contributions: Contributions of this study can be sum-

marized as follows. 1) We mine and represent latent pattern-

s hidden in a pre-trained CNN using an AOG. The AOG

representation enables the QA w.r.t the semantic hierarchy

of the target part. 2) We propose to use active QA to ex-

plicitly learn the semantics of each AOG branch, which

ensures a high learning efficiency. 3) In experiments, our

method exhibits superior performance to other baselines in

terms of weakly-supervised part localization. For example,

our methods with 11 part annotations outperformed fast-

RCNNs with 60 annotations in Fig. 5.

2. Related work

Passive CNN visualization vs. active CNN semanti-

cization: In order to explore the hidden semantics in the

CNN, many studies visualized and analyzed patterns of C-

NN units [44, 23, 33, 1, 21].

However, from the perspective of semanticizing CNN u-

nits, CNN visualization and our active QA go in two op-

posite directions. Given a certain unit in a pre-trained C-

NN, the former mainly visualizes the potential visual pat-

tern of the unit passively. However, the latter focuses on

a more fundamental problem in real applications, i.e. giv-

en a query of modeling/refining certain object parts, can

we efficiently discover certain patterns that are related to

the part concepts, within the pre-trained CNN from its com-

plex neural activations? Given CNN feature maps, Zhou et

al. [48, 49] discovered latent “scene” semantics. Simon et

al. discovered objects [30] from CNN activations in an un-

supervised manner, and learned part concepts in a super-

vised fashion [32]. AOG structure is suitable for represent-

ing semantic hierarchy of objects [50, 29], and [46] used an

AOG to represent the CNN. In this study, we used semantic-

level QA to incrementally mine part semantics from the C-

NN and grow the AOG. Such a “white-box” representation

of the CNN knowledge also guided further active QA.

Unsupervised/active learning: Many methods have

been developed to learn object models in an unsupervised

or weakly supervised manner. Methods of [5, 36, 47, 31]

learned with image-level annotations without labeling ob-

ject bounding boxes. [11, 7] did not require any anno-

tations during the learning process. [8] collected train-

ing data online from videos to incrementally learn mod-

els. [12, 37] discovered objects and identified actions
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Figure 2. And-Or graph grown on the pre-trained CNN as a seman-

tic branch. The AOG associates certain CNN units with certain

image regions. The red lines indicate the parse graph.

from language Instructions and videos. Inspired by active

learning [38, 41, 22], the idea of learning from question-

answering has been used to learn object models [9, 27, 39].

Branson et al. [4] used human-computer interactions to la-

bel object parts to learn part models. Instead of directly

building new models from active QA, our method uses the

QA to semanticize the CNN and transfer the hidden knowl-

edge to the AOG.

Modeling “objects” vs. modeling “parts” in un-

/weakly-supervised learning: In the scope of unsuper-

vised learning and/or weakly-supervised learning, model-

ing parts is usually more challenging than modeling en-

tire objects. Given image-level labels (without objec-

t bounding boxes), object discovery [24, 30, 25] and co-

segmentation [3] can be achieved by identifying common

foreground patterns from complex background. In addition,

there are some strong prior knowledges for object discovery,

such as closed boundaries and common object structures.

In contrast, to the best of our knowledge, there is no

mechanism to distinguish a certain part concept from oth-

er parts of the same object. It is because 1) all the parts

represent common foreground patterns among objects; 2)

some parts (e.g. the abdomen) do not have shape bound-

aries to identify their shape extent. Thus, up to now, people

mainly extract implicit middle-level part patches [35], but

it is difficult to capture explicit semantic meanings of these

parts.

3. Preliminaries: And-Or graph on a CNN

In this section, we briefly introduce an AOG, which is

designed to explain the latent semantic structure within the

CNN. As shown in Fig. 2, an AOG has four layers, i.e. se-

mantic part (OR node), part template (AND node), latent

pattern (OR node), and CNN unit. In the AOG, an OR n-

ode encodes a number of alternative candidates as children.

An AND node uses its children to represent its constituent

regions. For example, 1) the semantic part (OR node) en-

codes a number of template candidates for the part as chil-

dren. 2) Each part template (AND node) encodes the spatial

relationship between its children latent patterns (each child

corresponds to a constituent region or a contextual image

region). 3) Each latent pattern (OR node) takes a number of

CNN units in a certain conv-slice as children to represent al-

ternative deformation candidates of the pattern (the pattern

may appear in different image positions).

Given an image I1, we use the CNN to compute neural

activations on I in its conv-layers, and then use the AOG for

hierarchical part parsing. I.e. we use the AOG to semanti-

cize the neural activations and localize the target part.

We use V sem, V tmp ∈ Ωtmp, V lat ∈ Ωlat, and V unt ∈ Ωunt,

respectively, to denote nodes at the four layers. During the

parsing procedure, 1) the top node V sem selects a part tem-

plate V̂ tmp to explain the whole part; 2) V̂ tmp let its chil-

dren latent patterns use their own parsing configurations

to vote for V̂ tmp’s position, thereby parsing an image re-

gion for V̂ tmp; 3) each latent pattern V lat ∈ Child(V̂ tmp) s-

elects a CNN-unit child with a certain deformation range

V̂ unt ∈ Child(V lat) as a stand-in of the pattern.

We define a parse graph pgI to denote the parsing con-

figurations. As the red lines in Fig. 2, pgI is a tree of image

regions that are assigned to AOG nodes, pg = {ΛI,V sem} ∪

{ΛI,V̂ tmp} ∪V lat∈Child(V̂ tmp) {ΛI,V lat}, where for each node V ,

ΛI,V denotes the image region that is parsed for V . We use

ΛV to simplify the notation of ΛI,V , without ambiguity.
We design an inference score SI(V |ΛV ) for each node

V to measure the compatibility between a given region ΛV

and V (as well as the AOG branch under V ). Thus, hierar-
chical part parsing on a given image I can be achieved in a
bottom-up manner. We compute inference scores for CNN
units, then propagate the scores to latent patterns and part
templates, and finally obtain the score of the top node as
the overall inference score L(I,θ). We determine the parse
graph p̂gI that maximizes the overall score:

L(I,θ)=SI(V
sem|ΛV sem), p̂gI =argmaxpgI

L(I,θ)|pgI (1)

where θ denotes the AOG parameters.

Terminal nodes (CNN units): Each terminal node un-

der a latent pattern takes a certain square within a certain

conv-slice, which represents deformation candidates of the

latent pattern. Each V unt corresponds to a fixed image re-

gion ΛV unt . I.e. we propagate V unt’s receptive field to the

image plane, and use the final field as ΛV unt . The score of

V unt, SI(V
unt)2, is designed to describe the neural response

1Considering CNN’s superior performance in object detection, as in

[6], we regard object detection and part localization as two separate pro-

cesses for evaluation. Thus, we crop I to only contain the object and resize

I for CNN inputs to simplify the scenario of learning for part localization.
2Please see [46] for detailed settings.
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value of V unt and its local deformation level.
OR nodes: Given children’s parsing configurations of an

OR node (either V sem or V lat), V O selects the child V̂ with
the highest score, and propagates V̂ ’s parsing result to V O:

SI(V
O|Λ̂V O )=maxV ∈Child(V O)SI(V |Λ̂V ), Λ̂V O← Λ̂V̂ (2)

AND nodes: Given parsing results of a part template
V tmp’s children latent patterns, we parse an image region
for V tmp, which maximizes its score.

SI(V
tmp|ΛV tmp)=

∑

V lat∈Child(V tmp)

[

SI(V
lat|Λ̂V lat) + S inf(ΛV tmp |Λ̂V lat)

]

Λ̂V tmp = argmaxΛ
V tmp

SI(V
tmp|ΛV tmp)

(3)

where Sinf(ΛV tmp |Λ̂V lat)2 measures the spatial compatibility

between parsing configurations of ΛV tmp and Λ̂V lat on I .

AOG construction: The method for constructing an

AOG based on part annotations was proposed in [46]. We

briefly summarize this method as follows. Let I denote

a set of cropped object images of a category. Among al-

l objects in I, only a small number of objects, Iant =
{Ii|i = 1, 2, . . . ,m} ⊂ I, have annotations of the target

part. For each annotated object I ∈ Iant, we label two terms

(Λ∗
I,V sem , V tmp∗

I ). Λ∗
I,V sem

I

denotes the ground-truth bounding

box of the part, and V tmp∗
I specifies the true choice of the

part template for the part in I . For the first two layers of the

AOG, the AOG is set to only contain the part templates that

appear in part annotations.
Thus, AOG construction is to mine a total of n differ-

ent latent patterns for each part template V tmp, where n is
a hyper-parameter. For each latent pattern V lat, parameters
θV lat ⊂ θ mainly determine 1) V lat’s deformation range and
2) the prior displacement from V tmp to V lat. The estimation
of θV lat can be roughly written as2

max
θ

{

mean
I∈I

V tmp

SI(V
tmp∗
I |Λ

V
tmp∗

I

=Λ∗
I,V sem) + mean

I′∈I
S local
I (V tmp∗

I )
}

(4)
where IV tmp = {I ∈ Iant|V tmp∗

I = V tmp}. Compared to

SI(V
tmp∗
I |Λ

V
tmp∗

I

), S local
I (V tmp∗

I ) =
∑

V lat∈Child(V
tmp∗

I
) SI(V

lat

|Λ̂V lat) is an inference score that ignores the pairwise spa-

tial compatibility.

4. Learning from active question-answering

4.1. Overview of knowledge mining

Compared to conventional batch learning, our method

uses a more efficient learning strategy, which allows the

computer to actively detect blind spots in its knowledge sys-

tem and ask questions. In general, knowledge blind spots in

the AOG include 1) neural-activation patterns in the CNN

that have not been modeled and 2) the inaccuracy of the ex-

isting latent patterns. We assume that the unexplained neu-

ral patterns potentially reflect new part templates, while the

inaccurate latent patterns correspond to the sub-optimally

modeled part templates.
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Figure 3. Illustration of the QA process. (top) We sort and select

objects. (bottom) We show questions asked for each target object.

Because an AOG is an interpretable representation that

explicitly encodes object parts, we can represent blind spots

of the knowledge using linguistic description. We use a to-

tal of five types of answers to explicitly project these blind

spots onto specific semantic details of objects. In this way,

the computer selects and asks a series of questions. Based

on the answers, the AOG incrementally grows new seman-

tic branches to explain new part templates and refine AOG

branches of existing part templates.

The computer repeats the following process in each QA

step. Let I denote a set of object images. As shown in Fig. 3,

the computer first uses the current AOG to localize objec-

t parts on all unannotated objects in I. Based on localiza-

tion results, the computer selects and asks about an object

I , from which the computer believes it can obtain the most

information gain. A question q = (I, V̂ tmp, Λ̂V sem) requires

people to determine whether the computer determines the

correct part template V̂ tmp and accurately localizes the part

in Λ̂V sem , and expects one of the following answers.

Answer 1: the part detection is correct. Answer 2: the

computer chooses the true template for the part in the parse

graph, but it does not accurately localizes the target part.

Answer 3: neither the part template nor the part location is

correctly estimated. Answer 4: the part belongs to a new

part template. Answer 5: the target part does not appear in

the object. In addition, in case of receiving Answers 2–4,

the computer will ask people to annotate the target part. In

case of getting Answer 3, the computer will require people

to specify the part template, as well as whether the object is

flipped. Then, our method uses the new annotation to refine

(for Answers 2–3) or create (for Answer 4) the AOG branch

for the annotated part template based on Eq. (4).

4.2. Question ranking

The core of the QA process is to select a sequence of

objects that reduce the AOG uncertainty the most. There-
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fore, in this section, we design a loss function to measure

the incompatibility between the AOG knowledge and the

actual part appearance in the object samples. We predic-

t the potential gain (decrease of the loss) of asking about

each object. Objects with large gains usually correspond to

unexplained or not well explained CNN neural activations.

Note that annotating the part in an object may also help ex-

plain parts on other objects, thereby leading to a large gain.

Thus, we use a greedy strategy to select a sequence of ques-

tions Ω = {qi|i = 1, 2, . . .}, i.e. asking about the object that

leads to the most gain in each step.

For each object I ∈ I, we use P(y|I) and Q(y|I) to de-
note the prior distribution and the estimated distribution of
an object part on I , respectively. y ∈ {+1,−1} is a label
indicating whether I contains the target part. The curren-
t AOG estimates the probability of object I containing the
target part as Q(y=+1|I)= 1

Z
exp[βL(I,θ)], where Z and β

are scaling parameters (see Section 5.1 for details); Q(y =
−1|I) = 1 − Q(y =+1|I). Let Iask ⊂ I denotes the objects
that have been asked during previous QA. For each asked
object I ∈ Iask, we set its prior distribution P(y=+1|I)= 1
if I contains the target part according to previous answer-
s; P(y = +1|I) = 0 otherwise. For each un-asked object
I ∈ I \ Iask, we set its prior distribution based on statistics
of previous answers, P(y=+1|I)=meanI′∈IaskP(y=+1|I ′).
Therefore, we formulate the loss function as the KL diver-
gence between the prior distribution P and the estimated
distribution Q, and seek to minimize the KL divergence via
QA.

Loss=KL(P‖Q) =
∑

I∈I

∑

y
P(y, I) log

P(y, I)

Q(y, I)

=λ
∑

I∈I

∑

y
P(y|I) log

P(y|I)

Q(y|I)

(5)

where P(y, I) = P(y|I)P (I); Q(y, I) = Q(y|I)P (I); λ =

P (I)=1/|I| is a constant prior probability for object I .

In fact, both the prior distribution P and the estimated
distribution Q keep changing during the QA process. Let
us assume that the computer selects object Ĩ ∈ I \ Iask and
that people annotate its part. The annotation would encode

the part knowledge of Ĩ into the AOG and greatly change

the estimated distribution for objects that are similar to Ĩ .
For each object I ′ ∈ I, we predict its estimated distribution
after the new part annotation as

Q̃(y=+1|I ′) =
1

Z
exp[βL(I ′,θnew)|Ĩ ]

L(I ′,θnew)|Ĩ =L(I ′,θ) + ∆L(Ĩ ,θ)e−α·dist(I′,Ĩ)

(6)

where L(I ′,θnew)|Ĩ indicates the predicted inference score

of I ′ when we annotate Ĩ . We assume that if object I ′ is

similar to object Ĩ , the inference score of I ′ will have an

increase similar to that of Ĩ . We estimate the score increase
of Ĩ as ∆L(Ĩ ,θ)=meanI∈IantL(I,θ) − L(Ĩ ,θ). α is a scalar
weight. We formulate the appearance distance between I ′

and Ĩ as dist(I ′, Ĩ) = 1 − φ(I′)T φ(Ĩ)

|φ(I′)|·|φ(Ĩ)|
, where φ(I ′) =MfI′ .

fI′ denotes CNN features of I ′ at the top conv-layer af-
ter ReLu operation, and M is a diagonal matrix represent-
ing the prior reliability for each feature dimension3. Thus,
exp[α · dist(I ′, Ĩ)] measures the similarity between I ′ and

Ĩ . In addition, if I ′ and Ĩ are assigned with different part
templates by the current AOG, we may ignore the similari-

ty between I ′ and Ĩ (by setting an infinite distance between
them) to achieve better performance. Based on the predic-
tion in Eq. (6), we can predict the changes of the KL diver-

gence after the new annotation on Ĩ as

∆KL(Ĩ) = λ
∑

I∈I

∑

y
P(y|I) log

Q̃(y|I)

Q(y|I)
(7)

Thus, in each step, the computer selects and asks about the
object that maximize the decrease of the KL divergence.

Î = argmaxI∈I\Iask∆KL(I) (8)

QA implementations: In the beginning, for each ob-

ject I , we initialize its prior distribution as P(y=+1|I)=1
and its estimated distribution as Q(y = +1|I) = 0. Then,

the computer selects and asks about an object Î based on

Eq. (8). We use the answer to update P. If new object part-

s are labeled during the QA process, we apply Eq. (4) to

update the AOG. More specifically, if people label a new

part template, the AOG will grow a new AOG branch to en-

code this template. If people annotate a part for an old part

template, our method will update its corresponding AOG

branch. Then, the new AOG can provide the new distribu-

tion Q. In later steps, the computer repeats the above QA

procedure of Eq. (8) and Eq. (4) to ask more questions.

5. Experiments

5.1. Implementation details

We used the 16-layer VGG network (VGG-16) [34],

which was pre-trained using 1.3M images in the ImageNet

ILSVRC 2012 dataset [26] with a loss for 1000-category

classification. Then, in order to learn part concepts for each

category, we further fine-tune the VGG-16 using object im-

ages in this category based on the loss for classifying target

objects and background. The VGG-16 contains a total of

13 conv-layers and 3 fully connected layers. We selected

the last 9 conv-layers as valid conv-layers. We extracted

CNN units from these layers to build the AOG.

In our method, three parameters were involved in active

QA, i.e. α, β, and Z. Considering that most object images

contained the target part in real applications, we ignored the

small probability of P(y=−1|I) in Eq. (7) to simplify the

computation. As a result, the parameter Z was eliminated

in the computation of Eq. (7), and the parameter β acted as

a constant weight for ∆KL(Ĩ), which did not affect object

selection in Eq. (8). Therefore, in our experiments, we set

α=4.0, which achieved the best performance.

3Mii ∝ exp[meanI∈ISI(V
unt
i )], where V unt

i is the CNN unit corre-

sponding to the i-th element of fI′ .
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Annotation Layer 1: Layer 2: Layer 3:

number semantic part part template latent pattern

05 3.15 3791.5 91.6

10 5.95 3804.8 93.9

15 8.52 3760.4 95.5

20 11.16 3778.3 96.3

25 13.55 3777.5 98.3

30 15.83 3837.3 99.2

Table 1. Average number of children of AOG nodes

5.2. Datasets

We used three benchmark datasets to test our method,

i.e. the PASCAL VOC Part Dataset [6], the CUB200-

2011 dataset [42], and the ILSVRC 2013 DET Animal-

Part dataset [46]. Just like in most part-localization stud-

ies [6, 46], we selected animal categories, which preva-

lently contain non-rigid shape deformation, to test part-

localization performance. I.e. we selected six animal

categories—bird, cat, cow, dog, horse, and sheep—from the

PASCAL Part Dataset. The CUB200-2011 dataset contains

11.8K images of 200 bird species. Like in [4, 32, 46], we

ignored species labels and regarded all these images as a s-

ingle bird category. The ILSVRC 2013 DET Animal-Part

dataset [46] was proposed for part localization. It consist-

s of 30 animal categories among all the 200 categories for

object detection in the ILSVRC 2013 DET dataset [26].

5.3. Baselines

We compared the proposed method with the following

thirteen baselines. We designed the first two baselines based

on the Fast-RCNN [14]. Note that we fine-tuned the fast-

RCNN with a loss for detecting a single class/part from

background, rather than for multi-class/part detection, for

a fair comparison. In the first baseline, namely Fast-RCNN

(1 ft), we directly fine-tuned the VGG-16 network using part

annotations to detect parts on well cropped objects. Then, to

enable a fair comparison, we conducted the second baseline

based on two-stage fine-tuning, namely Fast-RCNN (2 fts).

The Fast-RCNN (2 fts) first fine-tuned the VGG-16 network

using a large number of object-box annotations (more than

part annotations) in the target category, and then fine-tuned

the VGG-16 using a few part annotations.

The third baseline was proposed by [32], namely CNN-

PDD. CNN-PDD selected a conv-slice in a CNN (pre-

trained using ImageNet ILSVRC 2012 dataset) to represent

and localize the part on well cropped objects. Then, we s-

lightly extended [32] as the fourth baseline CNN-PDD-ft.

CNN-PDD-ft fine-tuned the VGG-16 using object-box an-

notations, and then applied [32] to the VGG-16 for learning.

The fifth and sixth baselines were the strongly super-

vised DPM (SS-DPM-Part) [2] and the technique in [18]

(PL-DPM-Part), respectively. They trained DPMs using

part annotations for part localization. We used the graph-

ical model proposed in [6] as the seventh baseline, namely

Part-Graph. The eighth baseline was the interactive learn-

ing of DPMs for part localization [4] (Interactive-DPM).

Without many training samples, “simple” methods are

usually insensitive to the over-fitting problem. Thus, we

designed the last four baselines as follows. We used the

VGG-16 network that was fine-tuned using object-box an-

notations, and collected image patches from a cropped ob-

ject based on the selective search [40]. We used the VGG-

16 to extract fc7 features from each image patch. The two

baselines (i.e. fc7+linearSVM and fc7+RBF-SVM) used a

linear SVM and a RBF-SVM, respectively, to detect the tar-

get part. The other baselines VAE+linearSVM and Coop-

Net+linearSVM used features of the VAE network [15] and

the CoopNet [43], respectively, instead of fc7 features, for

part detection.

Finally, the last baseline is the learning of AOGs [46]

without QA (AOG w/o QA). We annotated parts and part

templates on randomly selected objects.

In fact, both object annotations and part annotations are

used to learn models in all the thirteen baselines (including

those without fine-tuning).

5.4. Evaluation metric

It has been discussed in [6, 46] that a fair evaluation of

part localization requires removing the factors of object de-

tection. Therefore, we used ground-truth object bounding

boxes to crop objects from the original images to produce

testing images. Given an object image, object/part detection

methods (e.g. Fast-RCNN (1 ft), Part-Graph, and SS-DPM-

Part) usually estimate several bounding boxes for the part

with different confidence values. As in [32, 6, 24, 46], the

task of part localization takes the most confident bounding

box per image as the result. Given part-localization result-

s on objects of a category, we applied the normalized dis-

tance [32] and the percentage of correctly localized parts

(PCP) [45, 28, 19] to evaluate part localization. For the nor-

malized distance, we computed the distance between the

predicted part center and the ground-truth part center, and

then normalized the distance using the diagonal length of

the object as the normalized distance. For PCP, we used the

typical metric of “IoU ≥ 0.5” [14] to identify correct part

localizations.

5.5. Experimental results

We tested our method on the ILSVRC 2013 DET

Animal-Part dataset, the Pascal VOC Part dataset, and the

CUB200-2011 dataset. We learned AOGs for parts of the

head, the neck, and the nose/muzzle/beak of the six animal

categories in the Pascal VOC Part dataset. For the ILSVR-

C 2013 DET Animal-Part dataset and the CUB200-2011

dataset, we learned an AOG for the head part4 of each cate-

gory. Because the head is shared by all categories in the two

4It is the “forehead” part for birds in the CUB200-2011 dataset.
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Part Annot. Obj.-box finetune gold. bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi.

SS-DPM-Part [2] 60 No 0.1859 0.2747 0.2105 0.2316 0.2901 0.1755 0.1666 0.1948 0.1845 0.1944 0.1334 0.0929 0.1981 0.1355 0.1137 0.1717

PL-DPM-Part [18] 60 No 0.2867 0.2337 0.2169 0.2650 0.3079 0.1445 0.1526 0.1904 0.2252 0.1488 0.1450 0.1340 0.1838 0.1968 0.1389 0.2590

Part-Graph [6] 60 No 0.3385 0.3305 0.3853 0.2873 0.3813 0.0848 0.3467 0.1679 0.1736 0.3499 0.1551 0.1225 0.1906 0.2068 0.1622 0.3038

fc7+linearSVM 60 Yes 0.1359 0.2117 0.1681 0.1890 0.2557 0.1734 0.1845 0.1451 0.1374 0.1581 0.1528 0.1525 0.1354 0.1478 0.1287 0.1291

fc7+RBF-SVM 60 Yes 0.1818 0.2637 0.2035 0.2246 0.2538 0.1663 0.1660 0.1512 0.1670 0.1719 0.1176 0.1638 0.1325 0.1312 0.1410 0.1343

CNN-PDD [32] 60 No 0.1932 0.2015 0.2734 0.2195 0.2650 0.1432 0.1535 0.1657 0.1510 0.1787 0.1560 0.1756 0.1444 0.1320 0.1251 0.1776

CNN-PDD-ft [32] 60 Yes 0.2109 0.2531 0.1999 0.2144 0.2494 0.1577 0.1605 0.1847 0.1845 0.2127 0.1521 0.2066 0.1826 0.1595 0.1570 0.1608

Fast-RCNN (1 ft) [14] 30 No 0.0847 0.1520 0.1905 0.1696 0.1412 0.0754 0.2538 0.1471 0.0886 0.0944 0.1004 0.0585 0.1013 0.0821 0.0577 0.1005

Fast-RCNN (2 fts) [14] 30 Yes 0.0913 0.1043 0.1294 0.1632 0.1585 0.0730 0.2530 0.1148 0.0736 0.0770 0.0680 0.0441 0.1265 0.1017 0.0709 0.0834

Ours 10 Yes 0.0796 0.0850 0.0906 0.2077 0.1260 0.0759 0.1212 0.1476 0.0584 0.1107 0.0716 0.0637 0.1092 0.0755 0.0697 0.0421

Ours 20 Yes 0.0638 0.0793 0.0765 0.1221 0.1174 0.0720 0.1201 0.1096 0.0517 0.1006 0.0752 0.0624 0.1090 0.0788 0.0603 0.0454

Ours 30 Yes 0.0642 0.0734 0.0971 0.0916 0.0948 0.0658 0.1355 0.1023 0.0474 0.1011 0.0625 0.0632 0.0964 0.0783 0.0540 0.0499

horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.

SS-DPM-Part [2] 60 No 0.2346 0.1717 0.2262 0.2261 0.2371 0.2364 0.2026 0.2308 0.2088 0.2881 0.1859 0.1740 0.1619 0.0989 0.1946

PL-DPM-Part [18] 60 No 0.2657 0.2937 0.2164 0.2150 0.2320 0.2145 0.3119 0.2949 0.2468 0.3100 0.2113 0.1975 0.1835 0.1396 0.2187

Part-Graph [6] 60 No 0.2804 0.3376 0.2979 0.2964 0.2513 0.2321 0.3504 0.2179 0.2535 0.2778 0.2321 0.1961 0.1713 0.0759 0.2486

fc7+linearSVM 60 Yes 0.2003 0.2409 0.1632 0.1400 0.2043 0.2274 0.1479 0.2204 0.2498 0.2875 0.2261 0.1520 0.1557 0.1071 0.1776

fc7+RBF-SVM 60 Yes 0.2207 0.1550 0.1963 0.1536 0.2609 0.2295 0.1748 0.2080 0.2263 0.2613 0.2244 0.1806 0.1417 0.1095 0.1838

CNN-PDD [32] 60 No 0.2610 0.2363 0.1623 0.2018 0.1955 0.1350 0.1857 0.2499 0.2486 0.2656 0.1704 0.1765 0.1713 0.1638 0.1893

CNN-PDD-ft [32] 60 Yes 0.2417 0.2725 0.1943 0.2299 0.2104 0.1936 0.1712 0.2552 0.2110 0.2726 0.1463 0.1602 0.1868 0.1475 0.1980

Fast-RCNN (1 ft) [14] 30 No 0.2694 0.0823 0.1319 0.0976 0.1309 0.1276 0.1348 0.1609 0.1627 0.1889 0.1367 0.1081 0.0791 0.0474 0.1252

Fast-RCNN (2 fts) [14] 30 Yes 0.1629 0.0881 0.1228 0.0889 0.0922 0.0622 0.1000 0.1519 0.0969 0.1485 0.0855 0.1085 0.0407 0.0542 0.1045

Ours 10 Yes 0.1297 0.1413 0.2145 0.1377 0.1493 0.1415 0.1046 0.1239 0.1288 0.1964 0.0524 0.1507 0.1081 0.0640 0.1126

Ours 20 Yes 0.1083 0.1389 0.1475 0.1280 0.1490 0.1300 0.0667 0.1033 0.1103 0.1526 0.0497 0.1301 0.0802 0.0574 0.0965

Ours 30 Yes 0.1129 0.1066 0.1408 0.1204 0.1118 0.1260 0.0825 0.0836 0.0901 0.1685 0.0490 0.1224 0.0779 0.0577 0.0909

Table 2. Normalized distance of part localization on the ILSVRC 2013 DET Animal-Part dataset. The second column shows the number of

part annotations for training. The third column indicates whether the baseline used all object-box annotations in the category to pre-fine-

tune a CNN before learning the part (object-box annotations are more than part annotations).

Obj.-box finetune Part Annot. #Q Normalizaed distance

SS-DPM-Part [2] No 60 – 0.2504

PL-DPM-Part [18] No 60 – 0.3215

Part-Graph [6] No 60 – 0.3697

fc7+linearSVM Yes 60 – 0.2786

fc7+RBF-SVM Yes 60 – 0.3360

Interactive-DPM [4] No 60 – 0.2011

CNN-PDD [32] No 60 – 0.2446

CNN-PDD-ft [32] Yes 60 – 0.2694

Fast-RCNN (1 ft) [14] No 60 – 0.3105

Fast-RCNN (2 fts) [14] Yes 60 – 0.1989

AOG w/o QA [46] Yes 20 – 0.1084

Ours Yes 10 28 0.0626

Ours Yes 20 112 0.0434

Table 3. Part localization performance on the CUB200-2011

dataset. See Table 2 for the introduction of the 2nd and 3rd

columns. The 4rd column shows the number of questions for train-

ing. The fourth column indicates whether the baseline used all ob-

ject annotations (more than part annotations) in the category to

pre-fine-tune a CNN before learning the part.

datasets, we selected the head as the target part to enable a

fair comparison. We did not train the human annotators.

During the active QA process, boundaries between two part

templates were often very vague, so an annotator could as-

sign a part with either part templates.

In Table 1, we illustrated how the AOG grew when

people annotated more parts during the question-answering

process. We computed the average number of children

for each node in different AOG layers based on the AOGs

learned from the PASCAL VOC Part Dataset. It shows that

the AOG mainly grew itself by adding new AOG branches

for new part templates. The refinement of an AOG branch

for an existing part template did not significantly change the

size of this AOG branch.

Method Annot. #Q bird cat cow dog horse sheep Avg.

H
ea

d

Fast-RCNN (1 ft) [14] 10 – 0.326 0.238 0.283 0.286 0.319 0.354 0.301

Fast-RCNN (2 fts) [14] 10 – 0.233 0.196 0.216 0.206 0.253 0.286 0.232

Fast-RCNN (1 ft) [14] 20 – 0.352 0.131 0.275 0.189 0.293 0.252 0.249

Fast-RCNN (2 fts) [14] 20 – 0.176 0.132 0.191 0.171 0.231 0.189 0.182

Fast-RCNN (1 ft) [14] 30 – 0.285 0.146 0.228 0.141 0.250 0.220 0.212

Fast-RCNN (2 fts) [14] 30 – 0.173 0.156 0.150 0.137 0.132 0.221 0.161

Ours 10 14.7 0.144 0.146 0.137 0.145 0.122 0.193 0.148

N
ec

k

Fast-RCNN (1 ft) [14] 10 – 0.251 0.333 0.310 0.248 0.267 0.242 0.275

Fast-RCNN (2 fts) [14] 10 – 0.317 0.335 0.307 0.362 0.271 0.259 0.309

Fast-RCNN (1 ft) [14] 20 – 0.255 0.359 0.241 0.281 0.268 0.235 0.273

Fast-RCNN (2 fts) [14] 20 – 0.260 0.289 0.304 0.297 0.255 0.237 0.274

Fast-RCNN (1 ft) [14] 30 – 0.288 0.324 0.247 0.262 0.210 0.220 0.258

Fast-RCNN (2 fts) [14] 30 – 0.201 0.276 0.281 0.254 0.220 0.229 0.244

Ours 10 24.5 0.120 0.144 0.178 0.152 0.161 0.161 0.152

N
o
se

/M
u
zz

le
/B

ee
k Fast-RCNN (1 ft) [14] 10 – 0.446 0.389 0.301 0.326 0.385 0.328 0.363

Fast-RCNN (2 fts) [14] 10 – 0.447 0.433 0.313 0.391 0.338 0.350 0.379

Fast-RCNN (1 ft) [14] 20 – 0.425 0.372 0.260 0.303 0.334 0.279 0.329

Fast-RCNN (2 fts) [14] 20 – 0.419 0.351 0.289 0.249 0.296 0.293 0.316

Fast-RCNN (1 ft) [14] 30 – 0.462 0.336 0.242 0.260 0.247 0.257 0.301

Fast-RCNN (2 fts) [14] 30 – 0.430 0.338 0.239 0.219 0.271 0.285 0.297

Ours 10 23.8 0.134 0.112 0.182 0.156 0.217 0.181 0.164

Table 4. Part localization on the Pascal VOC Part dataset. The

third and fourth columns show the number of part annotations and

the average number of questions for training.

Fig. 4 shows the part localization results based on AOGs

and visualizes the content of latent patterns in the AOG

based on the technique of [10]. Tables 2, 4, and 3 compares

part-localization performance of different baselines on the

ILSVRC 2013 DET Animal-Part dataset, the Pascal VOC

Part dataset, and the CUB200-2011 dataset, respectively.

Tables 4, and 3 show both the number of part annotation-

s and the number of questions. Fig. 5 shows the perfor-

mance of localizing the head part on the PASCAL VOC Part

Dataset, when people annotated different number of parts

for training. Table 5 shows the results evaluated by the PCP.

In particular, the method of Ours+fastRCNN combined our

method and the fast-RCNN to refine part-localization re-
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Latent patterns for 
contextual knowledge

Latent patterns
for sub-parts

Figure 4. Visualization of latent patterns in AOGs for the head part (left) and part localization results based on AOGs (right).

Normalized distance

Part annotation number

Interactive‐DPM
PL‐DPM‐Part
SS‐DPM‐Part
fc7+linearSVM
fc7+RBF‐SVM
CNN‐PDD
CNN‐PDD‐ft
Fast‐RCNN (2 fts)
Fast‐RCNN (1 ft)
AoG w/o QA
Ours+fastRCNN

Figure 5. Part localization performance on the Pascal VOC Part

dataset.

sults5. Our method worked with about 1/6–1/2 part anno-

tations, but exhibited superior performance.

6. Justification of the methodology

There are three reasons for the superior performance of

our method. First, richer information: the latent patterns

in the AOG were pre-fine-tuned using a large number of

object images in the category, instead of being learned from

a few part annotations. Thus, the knowledge contained in

these patterns was far beyond that in the objects with part

annotations.

Second, less model drift: Instead of learning/fine-tuning

new CNN parameters, our method just used limited part an-

notations to mine “reliable” patterns and organize their spa-

tial relationships to represent the part concept. In addition,

during active QA, the computer usually selected and asked

about objects with common object poses based on Eq. (6),

i.e. objects sharing some common latent patterns with many

other objects. Thus, the learned AOG suffered less from the

over-fitting/model-drift problem.

Third, high QA efficiency: Our QA process balanced

both the commonness of a part template and the modeling

quality of this part template in Eq. (6). In early steps of

QA, the computer was prone to asking new part templates,

because objects with un-modeled part appearance usually

had low inference scores. In later QA steps, common part

5We used part boxes annotated during the QA process to learn a fast-

RCNN for part detection. Given the inference result Λ̂V tmp of part tem-

plate V tmp on image I , we define a new inference score for localiza-

tion refinement Snew
I

(V tmp|Λnew
V tmp )=Sold

I
(V tmp|Λ̂V tmp )+λ1Φ(Λnew

V tmp )+

λ2
‖p(Λ̂

V tmp )−p(Λnew

V tmp )‖

2σ2
, where σ = 70 pixels, λ1 = 5, and λ2 = 10.

Φ(Λnew
V tmp ) denotes the fast-RCNN’s detection score for the patch of Λnew

V tmp .

p(Λ) denotes the position of Λ.

# of part annotations Performance

SS-DPM-Part [2] 60 7.2

PL-DPM-Part [18] 60 6.7

Part-Graph [6] 60 11.0

fc7+linearSVM 60 13.5

fc7+RBF-SVM 60 9.5

VAE+linearSVM [15] 30 6.7

CoopNet+linearSVM [43] 30 5.6

Fast-RCNN (1 ft) [14] 30 34.5

Fast-RCNN (2 fts) [14] 30 45.7

Ours+fastRCNN 10 33.0

Ours+fastRCNN 20 47.2

Ours+fastRCNN 30 50.5

Table 5. Part localization performance evaluated using the PCP on

the Pascal VOC Part dataset.

appearance had been asked and modeled, and the comput-

er gradually changed to ask about objects of existing part

templates to refine certain AOG branches. In this way, our

method did not waste much computation in labeling object-

s that had been well explained or objects with infrequent

appearance.

7. Summary and discussion

In this paper, we aim to pursue answers to the following

three questions: 1) whether we can represent a pre-trained

CNN using an interpretable AOG model, which reveals se-

mantic hierarchy of objects hidden in the CNN, 2) whether

the representation of the CNN knowledge can be clear e-

nough to let people directly communicate with middle-level

AOG nodes, and 3) whether we can let the computer di-

rectly learn from weak supervision of active QA, instead of

strongly supervised end-to-end learning.

We tested the proposed method for a total of 37 cat-

egories in three benchmark datasets, and our method ex-

hibited superior performance to other baselines in terms of

weakly-supervised part localization. E.g. our method with

11 part annotations performed better than fast-RCNN with

60 part annotations on the ILSVRC dataset in Fig. 5.
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[25] D. Pathak, P. Krähenbühl, and T. Darrell. Constrained con-

volutional neural networks for weakly supervised segmenta-

tion. In ICCV, 2015. 3

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. In IJCV, 115(3):211–252, 2015. 2, 5, 6

[27] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both world-

s: human-machine collaboration for object annotation. In

CVPR, 2015. 3

[28] K. J. Shih, A. Mallya, S. Singh, and D. Hoiem. Part localiza-

tion using multi-proposal consensus for fine-grained catego-

rization. In BMVC, 2015. 6

[29] Z. Si and S.-C. Zhu. Learning and-or templates for object

recognition and detection. In PAMI, 2013. 2

[30] M. Simon and E. Rodner. Neural activation constellations:

Unsupervised part model discovery with convolutional net-

works. In ICCV, 2015. 2, 3

[31] M. Simon and E. Rodner. Neural activation constellations:

Unsupervised part model discovery with convolutional net-

works. In ICCV, 2015. 2

[32] M. Simon, E. Rodner, and J. Denzler. Part detector discovery

in deep convolutional neural networks. In ACCV, 2014. 2, 6,

7

[33] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep insid-

e convolutional networks: Visualising image classification

models and saliency maps. In arXiv:1312.6034v2, 2013. 2

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

5

[35] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery

of mid-level discriminative patches. In ECCV, 2012. 3

[36] H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui,

and T. Darrell. On learning to localize objects with minimal

supervision. In ICML, 2014. 2

[37] Y. C. Song, I. Naim, A. A. Mamun, K. Kulkarni, P. Singla,

J. Luo, D. Gildea, and H. Kautz. Unsupervised alignment of

actions in video with text descriptions. In IJCAI, 2016. 2

[38] Q. Sun, A. Laddha, and D. Batra. Active learning for struc-

tured probabilistic models with histogram approximation. In

CVPR, 2015. 3

[39] K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S.-C. Zhu. Joint

video and text parsing for understanding events and answer-

ing queries. In IEEE MultiMedia, 2014. 3

354



[40] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders. Selective search for object recognition.

In IJCV, 104(2):154–171, 2013. 6

[41] S. Vijayanarasimhan and K. Grauman. Large-scale live ac-

tive learning: Training object detectors with crawled data and

crowds. In CVPR, 2011. 3

[42] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The caltech-ucsd birds-200-2011 dataset. Technical Report

CNS-TR-2011-001, In California Institute of Technology,

2011. 2, 6

[43] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. Cooperative training

of descriptor and generator networks. In arXiv 1609.09408,

2016. 6, 8

[44] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014. 2

[45] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-

based r-cnns for fine-grained category detection. In ECCV,

2014. 6

[46] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Growing in-

terpretable graphs on convnets via multi-shot learning. In

AAAI, 2016. 2, 3, 4, 6, 7

[47] Q. Zhang, Y.-N. Wu, and S.-C. Zhu. Mining and-or graphs

for graph matching and object discovery. In ICCV, 2015. 2

[48] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.

Object detectors emerge in deep scene cnns. In ICRL, 2015.

2

[49] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torral-

ba. Learning deep features for discriminative localization. In

CVPR, 2016. 2

[50] S. Zhu and D. Mumford. A stochastic grammar of images. In

Foundations and Trends in Computer Graphics and Vision,

2(4):259–362, 2006. 2

355


