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Abstract

Image scene understanding requires learning the rela-

tionships between objects in the scene. A scene with many

objects may have only a few individual interacting objects

(e.g., in a party image with many people, only a handful of

people might be speaking with each other). To detect all re-

lationships, it would be inefficient to first detect all individ-

ual objects and then classify all pairs; not only is the num-

ber of all pairs quadratic, but classification requires lim-

ited object categories, which is not scalable for real-world

images. In this paper we address these challenges by us-

ing pairs of related regions in images to train a relationship

proposer that at test time produces a manageable number of

related regions. We name our model the Relationship Pro-

posal Network (Rel-PN). Like object proposals, our Rel-PN

is class-agnostic and thus scalable to an open vocabulary

of objects. We demonstrate the ability of our Rel-PN to lo-

calize relationships with only a few thousand proposals. We

demonstrate its performance on Visual Genome dataset and

compare to other baselines that we designed. We also con-

duct experiments on a smaller subset of 5,000 images with

over 37,000 related regions and show promising results.

1. Introduction

While object detection is progressing at an ever-faster

rate, relatively little work has explored understanding visual

relationships at a large scale with related objects visually

grounded to image regions. Visual relationships [15, 21]

are defined as 〈subject, predicate, object〉 tuples, where the

“subject” is related to the “object” by the “predicate” re-

lationship. Detecting visual relationships aims at not only

predicting if a relationship exists in an image but also local-

izing the “subject” and the “object”. The predicate region

can be simply determined by the union of the subject and

∗The first two authors contributed equally to this work

Figure 1: Given an image and its object proposals, only a handful

pairs of them can form a set of meaningful relationships. Blue

boxes are individual object proposals and green boxes are re-

lationships that contain subjects and objects. In this figure the

relationships are R1:〈person, take pictures of, person〉, R2, R3,

R4:〈person, under, umbrella〉, and R5:〈person, sit on, blanket〉.
Considering all pairs of object proposals is not only computation-

ally expensive, but will include many false positives, i.e., pairs that

don’t form any relationship.

object box. There are various types of visual relationships

that appear in the real world, non-comprehensively exem-

plified next. Positional relationships describe relative lo-

cation between objects like 〈glass, on, table〉, 〈bag, under,

desk〉, etc. Attributive relationships describe that an object

is a part of another or is composed of another (e.g., 〈brick,

of, building〉, 〈man, with, glasses〉). This requires an under-

standing beyond spatially relating the two objects. A third

type of relationship describes interactions between living

objects like 〈person, dancing with, person〉, and 〈man, rid-

ing, horse〉. Here, a posture-level understanding is needed

since recognizing these interactions rely on how each ob-

ject is posed to the other. A fourth type of relationship
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includes interactions between living and non-living objects

like 〈kid, flying, kite〉 and 〈man, throwing, frisbee 〉. In ad-

dition to difficult pose-level understanding needed for this

type, the interacting objects might be far from each other

which makes it further challenging (e.g., 〈kid, flying, kite〉).
To handle all of these cases, it would be impractical to

hand-write rules that can determine an arbitrary relationship

between any two regions. The aforementioned challenges

strongly motivate the need to learn the connection between

image regions from data; this is the goal of our work.

Assuming the availability of a fixed dictionary of objects

categories, the solution adopted in [15] for detecting rela-

tionship labels is to first detect all the individual objects in

images and consider all pairs as potential 〈subject, object〉
pairs. The objects are detected by training a Faster-RCNN

on a set of 100 types of objects, and similarly a predicate de-

tector is learned to detect one out of the 70 predicates (from

a closed dictionary of predicates). This limitation can be

avoided by class-agnostic object proposals. However, in or-

der to have a good recall rate, the number of proposals can-

not be too small. In [25], ∼2000 proposals are used while

the number is reduced to 1000 in [27]. In [19], they man-

age to use only 300 proposals at test-time. However, the

complexity becomes quadratic when considering all pairs

of proposals. Even if the number of proposals is as small

as 300, we still need to recognize all 90,000 pairs, mak-

ing it a computational bottleneck for relationship detection

systems. Moreover, an image with many individual objects

might only contain a handful of relationships, as shown in

Figure 1. Recently, the Visual Genome dataset [12] has

been released, which contains a total of 108,077 images

with 33,877 object categories. Clearly, it is not straightfor-

ward to apply any closed-dictionary method at this scale,

since the 33,877 object labels are too many for a CNN-

based classification to perform well.

In this paper, we introduce Relationship Proposal Net-

works (Rel-PN) to extend the idea of object proposals to vi-

sual relationships. In particular, we aim to directly propose

a set of potential 〈subject, object〉 pairs without consider-

ing every pair of individual objects. The resulting number

of proposed pairs is a few thousand, which is an order of

magnitude less than the number due to quadratic complex-

ity. We call these pairs visual relationship proposals, since

they are good candidates with high recall rates for relation-

ships, and their computational cost is much lower than ei-

ther exhaustive search (using a sliding window search) or

by considering all object pairs. We propose an end-to-end

trainable network with three branches for proposing sub-

jects, objects and relationships, respectively. We use an ef-

ficient strategy to select candidate pairs that satisfy spatial

constraints. The resulting pairs are then passed to a net-

work module designed to evaluate the compatibility using

both visual and spatial criteria, where incompatible pairs

are filtered out and the remaining pairs are the final rela-

tionship proposals. We further compare our method with

several intuitive baselines using individual object proposals,

and we demonstrate that our method exhibits both higher

recall rates and faster test-time performance.

2. Related Work

Object Proposals. Object proposal methods can be gen-

erally classified into two types: unsupervised approaches,

including super-pixel merging [25, 4, 2] and objectness

evaluation [1, 27], and supervised region prediction based

on learned deep features from CNNs [19, 11, 3]. The latter

has become increasingly popular since proposal generation

can be simply performed using one CNN forward pass with

near real-time running speed. With a minor sacrifice in ac-

curacy, it is possible to integrate the proposal network into

an end-to-end trainable detection system, enabling higher

detection efficiency [6, 18, 14].

Object Relationship Exploration. There is significant

literature that explores relationships between multiple ob-

jects, including object co-occurrence [17, 22, 13] and se-

mantic segmentation [9, 24]. Spatial relationships have

also been studied to improve both object-level and pixel-

precision tasks [7, 9]. The goal of these methods is to uti-

lize connections between objects to improve individual ob-

ject recognition. In contrast, our task aims to recognize the

entire relationship. Additionally, action/interaction recog-

nition [20, 26, 16] has been a well-studied area where the

“subject” is a human and “predicate” is a verb. In our work,

we study general relationships with different types, where

the“subject” and “predicate” are not constrained.

Visual Relationship Detection. Progress has been made

on visual relationship recognition and detection tasks. In

[21], the concept of visual phrases is introduced to repre-

sent relationship tuples. In [15], a new relationship detec-

tion model is proposed to not only recognize the relation-

ship but to also locate the related objects. However, this

method is restricted to a limited set of predicates/relations

(i.e., 70 object labels and 100 predicate labels). In [5], a

classification-free approach is proposed for visual relation-

ship recognition, but it does not localize the objects in the

predicted relationship.

We also notice that some state-of-the-art object detection

methods [14, 23, 18] have removed the object proposal step

and directly output detection boxes with labels. We argue

that relationship proposals are still necessary and difficult

to avoid for three reasons. First, the elimination of object

proposals is usually realized by regressing and classifying

anchor boxes (i.e., a set of location- and shape-predefined

boxes), where the number of anchor boxes are at the same

scale of feature maps (e.g., 8732 boxes in [14]). Simply ap-

plying this strategy to relationship detection would require

considering a quadratic number of anchor boxes, which is
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not tractable at large scale. Second, classification requires

limited object categories, while relationship descriptions in

the real-world are usually open. Third, proposing relation-

ships involves not only localizing salient regions but also

evaluating the visual connection between regions, making

it more challenging than simply proposing objects.

3. Model Architecture

We consider three important aspects while designing

our model. (1) Relationship compatibility: we model

the probability of two regions being related to one-another

(i.e., relationship compatibility predictor), (2) Efficiency:

Bounding the relationship regions (i.e. 〈subject, object〉
pairs) that are checked for compatibility by (1), and (3) Sub-

jectness and objectness: We account for the fact that the

subject and object coming from different distributions. This

is modeled by a different sub-network in contrast to the sub-

network that models the probability of a region being an

object (we call this objectness).

Subjectness and objectness sub-networks: We start to

address the aforementioned aspects by modeling the prob-

ability of being an subject given a region (i.e., subjectness)

and the probability of being an object given a region (i.e.,

objectness). It may be intuitive that subjects and objects

should exist within the same category space. However, we

will show later that the distributions of subject and object

categories are biased differently; see section3.1. Our model

discriminatively learns these two distributions by separate

sub-networks that we designate as subjectness and object-

ness sub-networks.

Relationship compatibility module: The subjectness

and the objectnness sub-networks produce regions with

high probability of being subjects or objects respectively,

but these regions might not have a connecting relationship.

Hence, the need to learn the compatibility with the rela-

tionship becomes apparent. The relationship compatibility

module takes a subject-object pair and their context (i.e., the

union in our case) and produces a relationship compatibility

score between the two regions. These scores are used to dis-

card subject-object regions that do not have a relationship.

Pruning subject-object pairs: While the compatibility

module could be fed regions with high subjectness and ob-

jectness scores, it is still computationally expensive to eval-

uate the compatibility for all subject-object pairs. This mo-

tivates further pruning of the pairs. Our solution starts by

introducing a third sub-network, which is trained to detect

the union-box of a relationship with ground truth annotation

as the union box of subject and object pairs. We observed

that this sub-network can locate the union box alone with

94% recall. Our idea is to prune the subject-object pairs by

using this high-recall sub-network to generate a set of union

boxes, and then select only the subject-object pairs whose

union rectangles overlap with the generated union boxes by

at least 50%. We found this approach to be highly effective

in reducing the computational complexity.

Apart from these concerns, we also aim at a model that

can be trained and tested end-to-end, i.e., it takes an image

as input and directly outputs a set of relationship proposals.

To address all these issues, we split the task into three steps

which correspond to the three modules shown in Figure 2.

3.1. 3­branch RPN

We use the Region Proposal Networks (RPN) in Faster

RCNN [19] to propose subjects, objects and unions respec-

tively. In particular, we add two twin branches to RPN start-

ing from conv3 1 down to conv5 3, resulting in a 3-branch

RPN (Figure 2). The relationship branch is used to pro-

pose union boxes of subject-object pairs, while the subject

and object branches propose their own boxes. This struc-

ture comes from our observation that the distribution of cat-

egories is different for subjects and objects. First, if a rela-

tionship is an interaction (i.e., the predicate is a verb) such

as 〈boy, fly, kite〉, its subject is more likely to be a living

being. In this case, the distribution of subjects’ categories

is more biased towards living beings than objects’. Second,

for some positional relationships such as 〈marking, on, t-

shirt〉, 〈kite, in, sky〉, and attributive relationships such as

〈brick, of, building〉, objects’ category distribution is biased

towards larger, coarser things while subjects’ is towards

smaller and finer ones. Therefore, two separated branches

are necessary to learn these two different distributions.

Given an input image of size W × H , we adopt VGG-

16 architecture from conv 1 1 to conv 5 3 (13 layers) to

convert the image into C × W ′ × H ′ tensor of features,

where C = 512, W ′ = ⌊W
16
⌋, and H ′ = ⌊H

16
⌋. Starting

from this feature map, each branch is N ×W ′ ×H ′ boxes

in the form of (xmin, ymin, xmax, ymax), where N is the

number of anchor boxes for each feature map location. Each

of these boxes is associated with a confidence score for each

branch. We consider 5 ratios and 7 scales for every location

in the W ′ × H ′ grid, resulting in N = 35, where the 5

ratios are 1:4, 1:2, 1:1, 2:1, 4:1, and the 7 scales are 2, 4,

8, 16, 32, 64, 128. All the 3 × N × W ′ × H ′ boxes and

3×N×W ′×H ′ confidence scores from the three branches

are passed as input to the proposal selection module.

At train-time, we feed subject and object branches with

their corresponding ground-truth boxes. For the relation-

ship branch, we use the union of subject and object box as

ground-truth for each relationship. We fix the parameters of

conv1 1 to conv2 2 and fine-tune conv3 1 to conv5 3.

3.2. Proposal Selection

In this module, each set of N × W ′ × H ′ boxes are

clipped to the image boundary, followed by non-maximum-

suppression and sorting by their confidence scores. Then,

we pick the top Krel(Krel = 5000 in our model) relation-
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Figure 2: Relationship Proposal Network architecture. “sbj”, “obj” and “rel” are abbreviations for “subject”, “object” and “relationship”.

We feed an input image to a 3-branch RPN where each branch produces a set of candidate boxes. Orange, purple, blue boxes are subject,

relationship and object proposals, respectively. The proposal selection module takes these boxes and selects qualified subject-object pairs,

which are then used to generate visual and spatial features. In visual compatibility module, each subject box is ROI-pooled out as a

7 × 7 × 512 feature, and so as for object and relationship boxes. The three features are then concatenated, followed by a convolutional

(conv) layer, a fully-connected (fc) layer and a softmax layer to get the visual score; in spatial compatibility module, an 18-d feature is

generated by concatenating the box deltas of 〈S, O〉, 〈S, P〉 and 〈O, P〉. Then we pass the feature to two fully-connected (fc) layers followed

by a softmax layer to get the spatial score. Finally, visual and spatial scores are combined with different weights controlled by α to get the

overall score.

ship boxes and do the following for each of them:

1. Get search region: Enlarge the relationship box by a

factor (1.1 in our model) and use that as a search region;

2. Select individual subjects and objects: Consider only

those subject and object boxes that are within the search

region, select top Ksbj of subject boxes and top Kobj of

object boxes (Ksbj = Kobj = 9 in our model);

3. Select qualified pairs: For each of the Ksbj × Kobj

subject-object pairs, we check whether its union box

overlaps with the current relationship box by a thresh-

old (0.5 in our model), and keep it only if this condition

is satisfied; we also consider an additional set of Ksbj

pairs where we pair each of the Ksbj subject boxes with

the current relationship box. This additional set is gener-

ated specifically for those relationships whose subjects

are located within objects, such as 〈kite, in, sky〉 and

〈window, of, building〉. In those cases, the object box

coincides with the relationship box. We add all qualified

pairs to an accumulative, duplicate-free list;

After these are done for all the Krel relationship boxes,

the result pairs are ranked by the average of subjectness and

objectness scores, and the top Npair pairs are kept. At test-

time, these Npair candidates are directly passed to the next

module; at train-time, we need to generate positive and neg-

ative samples from them, since the compatibility module is

trained as a binary classifier, which is fed with a batch of

subject-object pairs as training samples, with binary labels

indicating whether each pair is compatible or not.

For a positive sample, we define it as a pair satisfying all

the following three conditions: 1) the subject box S over-

laps with its closest ground-truth subject box Sgt by at least

0.5; 2) the object box O overlaps with its closest ground-

truth object box Ogt by at least 0.5; 3) the two ground-truth

boxes Sgt and Ogt should be a ground-truth relationship

pair. The first two conditions ensure localization accuracy

of each box, while the third condition excludes those pairs
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(a) Two positive samples

(b) Two negative samples

Figure 3: Sampling strategy for training. Sampling on an ex-

ample image with a) two positive pairs: R1 = 〈S1, O1〉 = 〈girl,

play, basketball〉, R2 = 〈S2, O2〉 = 〈boy, wear, pants〉, and b) the

corresponding negative pairs: R′

1 = 〈S1, O2〉, R
′

2 = 〈S2, O1〉,
which are obtained by pairing unrelated subjects and objects.

that are well located but mismatched.

For a negative sample, the definition is a pair satisfy-

ing any of the following three: 1) the subject box S over-

laps with the ground-truth Sgt by less than 0.5; 2) the ob-

ject box O overlaps with the ground-truth Ogt by less than

0.5; 3) both the subject and object overlaps are at least 0.5,

but the two ground-truth boxes 〈Sgt, Ogt〉 is not a ground-

truth relationship pair. The third condition is critical, since

it enables the compatibility module to contrast correctly

matched pairs against mismatched ones and learn the visual

connection between subjects and objects in positive pairs.

The sampling strategy is illustrated in Figure 3.

3.3. Compatibility Evaluation

The compatibility module is designed to evaluate the

likelihood of a given box pair being a true relationship. We

consider two aspects of the likelihood – visual compatibil-

ity, which analyzes coherence of the two boxes’ appear-

ance; spatial compatibility, which explores the locations and

shapes of the two boxes. We designed two branches for

these two purposes, get a visual score and spatial score from

each branch, then integrate them into a final score(as shown

in “Compatibility Evaluation” of Figure 2). The following

paragraphs introduce the two components of this module.

Visual Compatibility: The input to this component is vi-

sual features of the samples selected from the last mod-

ule. Each feature is obtained by extracting the conv5 3

features within the subject, object and the union box us-

ing ROI-pooling, then concatenating the three features into

one. Since the feature of each box is 512 × 7 × 7, we end

up with a 1536 × 7 × 7 concatenated feature map. Note

that we also integrate the feature of the union box since it

provides contextual information (i.e., visual feature of the

whole relationship region). On this feature map we apply a

convolution layer using a 3× 3 filter with no zero-padding,

shrinking the feature map from 7 × 7 to 5 × 5. We do this

for two reasons: one is to learn a representative feature for

the concatenation, the other is to reduce the size of param-

eters. After that, we append one fully-connected layer with

2048-d output and a softmax layer to generate a probability

as the visual score.

Spatial Compatibility: The spatial feature of each sam-

ple is obtained by considering the difference between sub-

ject, object and relationship boxes. Specifically, a spa-

tial feature is a vector of 18 dimensions concatenating

three 6-d vectors, each indicating the difference of sub-

ject and object boxes ∆(S,O), subject and relationship

boxes ∆(S, P ), object and relationship boxes ∆(O,P ).
We adopt the idea of box regression [8] and use box delta

as the metric of box difference. Specifically, ∆(S,O) =
(tSO

x , tSO
y , tSO

w , tSO
h , tOS

x , tOS
y ) where each dimension is

given by

tSO
x = (xS − xO)/wS , tSO

y = (yS − yO)/hS ,

tSO
w = log(wS/wO), tSO

h = log(hS/hO),

tOS
x = (xO − xS)/wO, tOS

y = (yO − yS)/hO,

(1)

where xS , yS , wS , hS denotes the center coordinates of a

subject box, and similarly xO, yO, wO, hO is for an ob-

ject box. The first 4 dimensions (tSO
x , tSO

y , tSO
w , tSO

h ) is

the box delta that regresses the subject box to the object

box, while the last 2 dimensions (tOS
x , tOS

y ) comes from the

box delta (tOS
x , tOS

y , tOS
w , tOS

h ) that regresses the object box

to the subject, excluding tOS
w = log(wO/wS) and tOS

h =
log(hO/hS) since tOS

w = 1−tSO
w and tOS

h = 1−tSO
h . Simi-

larly, we define ∆(S, P ) = (tSP
x , tSP

y , tSP
w , tSP

h , tPS
x , tPS

y ),

and ∆(O,P ) = (tOP
x , tOP

y , tOP
w , tOP

h , tPO
x , tPO

y ). We con-

catenate ∆(S,O), ∆(S, P ) and ∆(O,P ) to get the 18-

d feature, which is then passed to two consecutive fully-

connected layers with 64 outputs. A softmax layer is ap-

pended in the end to produce the spatial score.

Once we have the visual score pv and spatial score ps,

we integrate them by a convex combination defined as

p = αpv + (1− α)ps (2)

where p is the combined score, α is the ratio of visual com-

patibility, which can be learned using existing linear pro-

gramming methods. We empirically set α = 0.8 for all ex-

periments and found that this fixed value works just as well.

We also conduct a comprehensive evaluation on different

values of α in section 4.2.

4. Experiments

We evaluate our model by localizing relationships in im-

ages. To our best knowledge we are the first to study rela-
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5000 proposals IoU≥0.5 IoU≥0.6 IoU≥0.7

SS, pairwise, 71×71 18.4 12.3 7.2

SS, nns, 100×50 19.5 12.6 7.1

SS, nns, 200×25 17.5 10.5 5.5

SS, nns, 400×13 14.8 8.4 4.2

EB, pairwise, 71×71 20.8 14.7 8.3

EB, nns, 100×50 21.9 14.8 7.5

EB, nns, 200×25 21 13 5.8

EB, nns, 400×13 18.7 10.5 4.2

RPN, pairwise, 71×71 27.3 19.2 9.4

RPN, nns, 100×50 32.5 22.5 9.8

RPN, nns, 200×25 34 21.1 8.1

RPN, nns, 400×13 28.3 15.8 5.2

Rel-PN, pro sel 37.1 22 8.5

Rel-PN, pro sel + spt 34.2 20.2 7.8

Rel-PN, pro sel + vis 39.1 24 9.7

Rel-PN, pro sel + vis + spt 39.4 24.2 9.9

Table 1: Recall rates on VG by 5000 proposals. “IoU≥t” means

both subject and object boxes overlap with ground-truth by at least

t. “Rel-PN” represents our model, “nns” denotes nearest neigh-

bors search, “pro sel” denotes proposal selection, “vis” and “spt”

stand for visual and spatial compatibility.

tionship proposals, hence we demonstrate the necessity and

superiority of our method over several strong baselines de-

rived from individual object proposals. We conduct experi-

ments and report state-of-art results on two datasets: Visual

Genome (VG) relationships [12] and Visual Relationship

Detection (VRD) dataset [15].

4.1. Experimental Setup

Baseline Models. Our goal of studying the following base-

line models is to evaluate the performance of relationship

proposals generated by some intuitive strategies. Given

a set of N object proposals P = {P1, P2, ..., PN}, the

first strategy is to simply pair every two object proposals

(denoted as “pairwise”). A more sophisticated strategy is

to pair each object with its geometric nearest neighbors

(denoted as “nns”), since intuitively speaking, closer ob-

jects are more likely to be related. Specifically, our sec-

ond baseline is to pair each proposal with each of the top

K nearest neighbors Q = {Q1, Q2, ..., QK}, resulting in

N ×K relationship proposals. Euclidean distance between

box centers is used as the distance metric. Every pair of

〈Pi, Qj〉(i = 1, ..., N, j = 1, ...,K) is used twice: one with

Pi as subject and Qj as object, and the other with Qi as

subject and Pj as object. Duplicate pairs are removed if

exist.

We consider three object proposal methods for each of

these two strategies: Selective Search (SS) [25], EdgeBoxes

(EB) [27] and Region Proposal Network (RPN) [19]. For

SS and EB, we directly apply them on our testing images.

For RPN, we use both subject and object boxes as ground-

truth for training, then use the trained model to generate

individual object proposals.

IoU≥0.5 2000 5000 8000 10000

SS, pairwise 14.9 18.4 20.5 21.5

EB, pairwise 16.4 20.8 23.3 24.4

RPN, pairwise 18.1 27.3 32.6 35.3

Rel-PN, pro sel 29.7 37.1 39.5 40.3

Rel-PN, pro sel + spt 25.2 34.2 39 41.2

Rel-PN, pro sel + vis 29.3 39.1 42.3 43.1

Rel-PN, pro sel + vis + spt 29.8 39.4 42.8 43.2

Table 2: Recall rates on VG with IoU≥0.5. Abbreviations are

the same with Table 1.

Our Model. We perform ablation studies on our model and

compare results with the baselines. Specifically, we con-

sider the following variants of our model:

• Proposal Selection. We select top N proposals by the

average of subjectness and objectness scores from the

proposal selection module without feeding it to the com-

patibility module.

• Proposal Selection + Spatial Compatibility. We use

only spatial confidence scores for the final proposals.

• Proposal Selection + Visual Compatibility. We use

only visual confidence scores for the final proposals.

• Proposal Selection + Visual + Spatial Compatibility.

This is our complete model. Visual and spatial scores are

combined as shown in section 3.3.

Evaluation Settings. We design the following two experi-

ments and evaluate recall rates in various settings:

1. 5000 proposals, varying IoU thresholds We fix the

number of relationship proposals as 5000, leading to

N = ⌈
√
5000⌉ = 71 object proposals for the pairwise

strategy. For the nearest-neighbor strategy, we gener-

ate 1) N = 100 object proposals with K = 50 nearest

neighbors for each; 2) N = 200 object proposals with

K = 25 nearest neighbors for each; 3) N = 400 ob-

ject proposals with K = 13 nearest neighbors for each.

We use 0.5, 0.6, 0.7 for Intersection over Union (IoU)

thresholds and report recall rates of relationship propos-

als where both subject and object overlap with ground-

truth by at least the threshold.

2. IoU≥0.5, varying number of proposals We fix the

baseline strategy as pairwise and generate Nrel =2000,

5000, 8000 and 10000 relationship proposals for base-

lines and our models. For the baselines, the correspond-

ing numbers of object proposals are N = ⌈
√
Nrel⌉ =

45, 71, 90 and 100. For our models, we directly select

the top 2000, 5000, 8000 and 10000 proposals ranked by

scores from our different modules.

4.2. Visual Genome

The Visual Genome dataset (VG) contains 108, 077 im-

ages with 21 relationships on average per image. Each rela-
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Figure 4: Recall vs IoU on VG with various numbers of proposals. We compare against the pairwise baselines for 2000, 8000 and

10000 proposals while considering both pairwise and nearest-neighbor baselines for 5000 proposals.

tionship is of the form 〈subject, predicate, object〉 with an-

notated subject and object bounding boxes. We follow [10]

and split the data into 103, 077 training images and 5, 000
testing images. We train the model for 300k iterations with

a learning rate of 0.001 for the first 200k and 0.0001 for the

last 100k.

Quantitative Results. The results of the first experiment

are shown in Table 1, while the second experiment is re-

ported in Table 2. We also show Recall vs IoU curves with

2000, 5000, 8,000 and 10,000 proposals in Figure 4. We

make the following observations:

• Table 1 shows that using 5000 proposals, which is of a

reasonable complexity, our complete model achieves the

highest recall against all baselines and variants of our

model.

• Even without compatibility evaluation, the proposal se-

lection module alone (“Rel-PN, pro sel” in Table 1) can

achieve 37.1% recall, due to the accuracy of union box

localization, and the efficient strategy of selecting quali-

fied subject-object pairs using the union boxes.

• The visual compatibility is clearly more important than

spatial. Using only visual compatibility can lead to a sub-

optimal performance (39.1%), while using spatial com-

patibility alone exhibits an obvious drop in recall. This

is mainly because for general relationships, the distri-

bution of spatial features are usually more uniform and

thus less discriminating than visual features. For exam-

ple, the appearance of 〈man, fly, kite〉 usually involves a

human holding the string of a kite in the sky. However,

the man’s size, the kite’s shape and the distance between

the man and kite often varies across different scenes,

making it harder to learn by using spatial features alone.

That said, the spatial compatibility is still better than the

best nearest-neighbor baseline (37.1% vs 32.5%), since

our spatial evaluation module learns to cover various re-

lationships with different spatial layouts, while nearest-

neighbor methods naively treat closer objects as provid-

ing better relationships.

• With a proper number of neighbors, the nearest-neighbor

strategy is better than the pairwise strategy. For example,

using Edgeboxes by 100 object proposals with 50 neigh-

bors (“EB, nns, 100 × 50”) has a higher recall (21.9%)

than using Edgeboxes in a pairwise manner (“EB, pair-

wise, 71 × 71”). This benefit arises from considering

more object proposals than pairwise (100 vs 71) and

pairing with closest objects, which are intuitively more

likely to be related. However, when the number of near-

est neighbors K is much smaller than the number of ob-

ject proposals N , there is an obvious decrease in perfor-

mance. This is because a small number of nearest neigh-

bors cannot cover medium or long distance relationships,

such as 〈boy, fly, kite〉, where “boy” is on the ground and

“kite” is high in the sky.

• As shown in Figure 4, our model works better for smaller

IoU thresholds. We found that this is mainly due to the

same reason why RPN is not good when IoU values are

high (see Figure 2 in [19]), when unsupervised proposal

methods (SS and EB) utilize pixel level clues (e.g., super-

pixels in SS and edges in EB) to determine object bound-

aries, while RPN-like networks regress proposals from

anchor boxes using smaller size features (i.e., 7x7 from

conv5 3). Therefore, the regressed proposals have less

ability to guarantee that object boundaries can be exactly

located in the original image. Nevertheless, our model

still outperforms others when using a moderate number

of proposals (e.g., 5000) with a reasonable IoU (e.g.,

IoU≥0.7).

Qualitative Results. In Figure 5, we show example pro-

posals generated by our model with their corresponding

ground-truth. The phrase of each ground-truth relationship

(e.g., 〈girl, chasing, bubble〉) is also shown for better illus-

tration. Our model is able to cover all three types of re-

lationships (interactive, positional, attributive). Note that

subject and object boxes have various shapes and distances,

while our model correctly finds meaningful relationships

and accurately localizes subjects and objects by boxes.

Visual Compatibility Weight. In Table 3, we show recall

rates with different values of the visual compatibility weight

α. We can see that results are close as long as visual com-

patibility weighs are more than the spatial, since the spatial

scores are generally less discriminating than visual scores.
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(a) 〈woman, hold, controller〉(Interactive) (b) 〈woman, holding, bike〉(Interactive) (c) 〈man, play, soccer ball〉(Interactive)

(d) 〈animal, under, tree〉(Positional) (e) 〈elephant, behind, dog〉(Positional) (f) 〈airplane, in, sky〉(Positional)

(g) 〈woman, wearing, scarf〉(Attributive) (h) 〈tire, on, bus〉(Attributive) (i) 〈bird, has, head〉(Attributive)

Figure 5: Example relationship proposals on VG. Red and blue boxes are ground-truth subject and object, yellow and green boxes are

outputs from our model.

5000 proposals IoU≥0.5 IoU≥0.6 IoU≥0.7

1.0 visual, 0.0 spatial 39.1 24 9.7

0.9 visual, 0.1 spatial 39.3 24.2 9.8

0.8 visual, 0.2 spatial 39.4 24.3 9.9

0.7 visual, 0.3 spatial 39.3 24.2 9.9

0.6 visual, 0.4 spatial 39 24 9.9

0.5 visual, 0.5 spatial 38.5 23.8 9.7

Table 3: Recall rates on VG with different values of α.. The

number of proposals is fixed as 5000.

IoU≥0.5 2000 5000 8000 10000

SS, pairwise 22.1 28 31.4 33

EB, pairwise 15.1 20.6 24.2 25.2

RPN, pairwise 28.9 36.2 41 43

Rel-PN, pro sel 35.1 41.9 43.9 44.5

Rel-PN, pro sel + spt 27.2 38.6 44 46.1

Rel-PN, pro sel + vis 36.8 44.1 45.5 47

Rel-PN, pro sel + vis + spt 38.3 44.3 46.4 47.3

Table 4: Recall rates on VRD with IoU≥0.5.

However, combining a moderate amount of spatial infor-

mation with visual scores improves the performance (e.g.,

0.3% gain from 39.1% of “1.0 visual, 0.0 spatial” to 39.4%
of “0.8 visual, 0.2 spatial”).

4.3. Visual Relationship Detection dataset

In this section we conduct experiments on the Visual

Relationship dataset (VRD) from [15]. We use the same

settings with the Visual Genome experiments. In Table 4

we observed that our model outperforms baselines on small

datasets as well. We also notice that here our spatial mod-

ule has an obviously better performance on VRD than on

Visual Genome (e.g., 44% vs 39% for 8, 000 proposals and

46% vs 41% for 10, 000). This is mainly because the an-

notated relationships in this dataset are usually denser than

Visual Genome, i.e., distances between subjects and objects

are smaller. Hence, the spatial distribution of relationships

is more biased and easier to learn by our spatial compatibil-

ity module.

For completeness, we include additional results for this

dataset in the supplementary material.

5. Conclusion

We introduced the task of proposing visual relationships,

which requires simultaneously localizing two regions that

are related. Challenges include visual and spatial variation

among all types of relationships and quadratic complexity

if all pairs of individual objects are considered. We de-

veloped a new Rel-PN architecture, which addresses these

challenges by utilizing both a heuristic spatial constraint

and a learned compatibility metric to select a manageable

number of relationship proposals. Our experiment demon-

strated our model’s efficiency and significant improvement

over several baseline models. Future work includes apply-

ing our relationship proposals to a detection system that out-

puts linguistic descriptions of subject, object and predicates.
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