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Abstract

Random forest has emerged as a powerful classification

technique with promising results in various vision tasks

including image classification, pose estimation and object

detection. However, current techniques have shown little

improvements in visual tracking as they mostly rely on

piece wise orthogonal hyperplanes to create decision

nodes and lack a robust incremental learning mechanism

that is much needed for online tracking. In this paper,

we propose a discriminative tracker based on a novel

incremental oblique random forest. Unlike conventional

orthogonal decision trees that use a single feature and

heuristic measures to obtain a split at each node, we

propose to use a more powerful proximal SVM to obtain

oblique hyperplanes to capture the geometric structure

of the data better. The resulting decision surface is not

restricted to be axis aligned, and hence has the ability to

represent and classify the input data better. Furthermore, in

order to generalize to online tracking scenarios, we derive

incremental update steps that enable the hyperplanes in

each node to be updated recursively, efficiently and in a

closed-form fashion. We demonstrate the effectiveness

of our method using two large scale benchmark datasets

(OTB-51 and OTB-100) and show that our method gives

competitive results on several challenging cases by relying

on simple HOG features as well as in combination with

more sophisticated deep neural network based models. The

implementations of the proposed random forest are avail-

able at https://github.com/ZhangLeUestc/

Incremental-Oblique-Random-Forest.

1. Introduction

Visual tracking can be viewed as a method to estimate

the coordinates of an object (e.g., object bounding box in

the image plane) consistently through a sequence of frames.

Due to its far-reaching applications in domains includ-

ing surveillance, human computer interaction, autonomous

Figure 1. Results obtained from the proposed Obli-RaF on chal-

lenging scenarios from OTB-100 dataset. First – second row: the

target undergoes severe motion problems, third – fourth row: Oc-

clusion, fifth – sixth row: illumination variations. Our method (in-

dicated by red bounding box) achieves more precise results when

compared to HCF [32] (in green) and FCNT [47] (in blue). Best

viewed in color and when zoomed.

driving, and health care, tracking is a core problem in com-

puter vision.

In this paper, we study the problem of ‘single-object

model-free tracking’ which is widely addressed in the track-

ing literature. Here, the tracker is initialized with a bound-

ing box of an arbitrary object of interest in the first frame.

Given this single (labeled) instance, the goal is to predict the

location of the object in an online manner in a model-free

setting, i.e., without using any explicit appearance or shape
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model. Whereas visual tracking in constrained settings with

minimal occlusion may be relatively straightforward, single

object tracking in an unconstrained, model-free setting in-

volves several challenges (see Fig. 1) due to illumination

and background variations, occlusions, unpredictable mo-

tion, motion blur, appearance changes owing to object de-

formations, and object drift.

Tracking methods can be classified as generative, dis-

criminative, or hybrid. Generative trackers build an object

appearance model based on some generative process and

search for regions most similar to the target model with-

out accounting for any information available from the back-

ground (e.g., [6, 13, 1, 14, 31, 30, 62]). Discriminative

trackers [3, 21, 4, 27, 53] address the problem by learning

a classifier to distinguish the target from the background.

Here, the classifier is typically evaluated exhaustively at

many locations to detect the target in subsequent frames and

updated online based on tracking results from each frame.

Recent advances in modern visual tracking systems have

seen the widespread adoption of discriminative trackers due

to their ability to distinguish the target object from back-

ground and other distractors.

Recently, random forest (RaF) has emerged as a power-

ful classification method [20] with promising results in sev-

eral computer vision applications [28] [12] [18] [43] [19].

Several interesting properties of RaFs including their effi-

ciency in both training and classification, scalability, and

robustness towards class imbalance make them potentially

attractive for tracking applications too. However, conven-

tional RaF methods have shortcomings as they only select

one feature to conduct a split at each node based on some

heuristic impurity measurement such as information gain

or Gini-index [10], which results in a piecewise orthogo-

nal hyperplane with a poor fit of data. This process ignores

the geometric shape of the feature space but focuses only

on improving the distribution of different classes (impurity

score) on each side of the hyperplane [35].

To tackle the above problem, we propose a novel Oblique

Random Forest (Obli-RaF) algorithm. Our approach differs

from conventional RaF in many ways. Firstly, our Obli-RaF

uses more than one feature to conduct a split resulting in an

oblique hyperplane at each decision node. This is shown

to be more accurate and efficient than the orthogonal RaF

[59, 37, 60]. Fig. 2 illustrates the difference between an

orthogonal and oblique decision tree using a toy dataset.

Note that oblique decision tree with its oblique hyperplane

captures the geometrical structure of the data better (red hy-

perplane in Fig. 2) than the piece-wise axis orthogonal hy-

perplane (in green). However, no attempts have been made

in exploring its use in online scenarios so far. Secondly,

in order to avoid the expensive feature selection process at

each node, we propose to use proximal support vector ma-

chines (PSVM) [34] - a supervised clustering step to learn
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Figure 2. A toy example of classification boundary generated by

orthogonal and oblique decision trees. Orthogonal RaF selects a

single feature at each node to conduct a split. This results in an

piece-wise axis orthogonal hyperplane (in green color). Oblique

RaF, on the other hand, uses more than one feature at each node

and thus results in an oblique hyperplane (in red color) that classi-

fies the data better.

the hyperplanes at each decision node. This decision tree

induction mechanism takes into account both the geomet-

ric structure of the feature space and the distance of the

data samples to the hyperplane. Furthermore, we propose

a closed form solution to recursively update the oblique hy-

perplanes at each node to adapt to appearance variations of

the target object. The key contributions of this paper are

summarized as follows:

• We propose a novel oblique random forest which can bet-

ter capture the geometric structure of the data within each

node of the decision tree without explicitly searching for

a “good” candidate feature. Our method results in deci-

sion trees that are, on average, 5.89 times shorter and 3

times faster than the orthogonal ones.

• Instead of searching for an oblique hyperplane, which

can be computationally prohibitive, we propose to learn

a proximal hyperplane in order to efficiently cluster the

samples at each node guided by their labels.

• We propose an efficient incremental 1 update strategy for

the oblique random forest tracker that is conservative in

its memory needs. Therefore, instead of storing all the

values of the “optimal” feature for each instance in order

to update the decision nodes, apart from the indices for

the randomly selected features, our method needs to store

only two extra matrices of size (logM)2 and (logM+1),
where M is the dimensionality of the input features.

• Through extensive experiments on two recently proposed

tracking benchmark datasets [54, 55], we show that our

method compares well with recent state-of-the-art track-

ing methods in terms of accuracy and robustness.

1In this paper we use “incremental” and “online” interchangeably in

the context of visual tracking.
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The rest of the paper is organized as follows: a review

of relevant works is presented in the following section. In

section 4, we introduce our oblique random forest for visual

tracking along with online update steps. In section 6, we

present experimental results and compare with state-of-the-

art methods. Finally, our conclusions are given in section 7.

2. Related work

In this section we first present a detailed review of work

pertaining to discriminative trackers and random forest and

highlight the novelty of our approach with respect to exist-

ing trackers and oblique random forest methods.

Advances in Discriminative Trackers. Discriminative

trackers have received wide attention in the recent past ev-

idenced by several recent studies, which have established

the superiority of discriminative trackers [2, 22, 3, 4, 24].

Along with the established discriminative trackers that in-

clude multiple-instance boosting [4], kernelized structured

SVM [24] and dictionary based trackers [5, 36, 62], several

ensemble methods were proposed in [2, 22, 3]

Following the success of RaF on many vision applica-

tions [7, 43, 23, 11, 29, 46, 42, 19], an online RaF was

first introduced for visual tracking in [41]. However, dif-

ficulties in updating the decision node parameters online

resulted in poor performance when compared to methods

such as Struck [24], P-N learning [27], multiple instance

learning [4] and Sparse Coding based classifiers [36][5].

Oblique random forest. Most earlier RaF based track-

ing [41, 45] including the evaluation study by [20] rely on

orthogonal random forest (see Fig. 2 for details), where at

each node of the decision tree, an orthogonal hyperplane

is exhaustively searched based on the numerical values of

each feature. However, these decision tree induction meth-

ods do not fit the data well and are reported to be less accu-

rate when compared to oblique trees [59, 37, 60].

Earlier works on oblique random forest have mostly fo-

cused on different hyperplane learning strategies as search-

ing for the optimal oblique hyperplane is computationally

expensive. Thus, many heuristic search methods based on

deterministic hill-climbing CART-LC [10] and randomized

search OC1 [38] were proposed. However, these methods

often give suboptimal solutions as they search one dimen-

sion at a time for node splitting, which is computationally

cumbersome in high-dimensional feature space.

Other closely related works include [59, 37], where PCA

and LDA were used at each node to build an oblique RaF,

and [60], where a multi-surface proximal SVM (MPSVM)

was used to learn two hyperplanes. The MPSVM approach

adopted therein relaxed the parallel constrains of the con-

ventional SVM and learned two non-parallel decision hy-

perplanes. These methods solve a generalized eigenvalue

problem at each non-leaf node which makes them computa-

tionally expensive. Moreover, all the above methods work

on batch mode and extending them to online scenarios is

not straight forward.

To the best of our knowledge, our work is the first at-

tempt to incrementally learn an oblique random forest. In

contrast to the earlier Obli-RaF method, we use PSVM at

each decision node to fit an proximal hyperplane that takes

into consideration the shape of the feature manifold as well

as the distance to the proximal hyperplanes. PSVMs are

efficient and amenable to incremental training. By cluster-

ing the samples of each class in a supervised fashion they

preclude a compute intensive hyperplane search process.

ConvNet based trackers. Recent advances in visual track-

ing have been obtained with deep convolutional neural net-

work (ConvNet) models. ConvNet and transfer learning

based tracking were used in [51, 49] where a ConvNet

is pre-trained with a huge amount of labeled images and

fine-tuned in the process of tracking. Along similar lines,

visual priors were learned from generic real-world images

and then transferred for representing objects in a scene

in [52]. Deep learning without pre-training was introduced

by [61, 58]. In [47], a fully-convolutional neural network

for visual tracking was proposed. In [48], ConvNets trained

within an ensemble framework were proposed for visual

tracking.

In our view, learning deep models for visual tracking

with limited samples is challenging. Using a pre-trained

model partly alleviates this problem by transferring rich fea-

ture hierarchies from large-scale image dataset such as Im-

ageNet [40]. However, there may exist a large divergence

between the source and target domain. To this end, we also

propose a collaborative tracker in the particle filter frame-

work by combining the merits of ConvNet models from

[47] and our oblique random forest classifier (Obli-RaF).

The ConvNet works in a generative fashion to predict the

probability of whether each particle belongs to the object

being tracked, whereas the Obli-RaF works as a discrimi-

native classifier to classify the object from the background.

This combination results in superior tracking performance

as demonstrated in section 6.

3. Particle filter tracking

Our tracking algorithm is formulated within a particle

filtering framework [39]. Let zt and Xt denote the state

variable describing the parameters of the object and the

observation respectively in the tth frame. In the parti-

cle filter framework, the true posterior state distribution

p(zt|X1:t) is approximated by a finite set of P samples

{zti}
P
i=1 (called particles) with corresponding normalized

weights {W t
i }

P
i=1. The particles are drawn from the pro-

posal density function q(zt|z1:t−1, X1:t) which is set to the

state transitional probability p(zt|zt−1). In practice, weight

5591



Wi of particle i is given by the observation (likelihood)

model

W t
i = W t−1

i ∗ p(Xt|zti), (1)

The observation likelihood is given by the classification

result and given as: p(xt|zt) = 1
K

∑

k I[gk(xt) > 0],
where I[.] is the indicator function and gk(x) is the result of

a binary classification from the kth decision tree in the en-

semble with K decision trees. We model state parameters

consisting of six parameters: translation in x-axis, transla-

tion in y-axis, scale variations, rotation angle, aspect ratio

and skew angle is modeled using a Gaussian distribution

assuming that the dimensions are independent.

4. Incremental Oblique Random Forests

In this section, we give a detailed description of our

oblique random forest method denoted as Obli-RaF.

In our particle filter framework, we assume that we

have access to N training samples (particles), Xt =
{xt

1, . . . ,x
t
N} at each instant t obtained from region pro-

posals. The samples are M dimensional: xt
i ∈ X ⊆

IRM , i ∈ {1, . . . , N}. Our objective is to classify the sam-

ples in Xt as belonging to class y = 1, indicating the ob-

ject of interest, or to class y = −1, indicating background

region. We achieve this by learning a mapping function

G : X → Y , where Y ∈ {−1,+1}. We denote a generic

data point by x and use x⋄, with ⋄ denoting the placeholder

for the index where ever necessary.

Our mapping function G is a random forest [9], com-

posed of K base classifiers G = {gk}
K
k=1, where the clas-

sifiers gk : X → Y, k ∈ {1, . . . ,K}, called decision trees

are combined using bagging [8]. Each decision tree gk(x)
classifies a sample x ∈ X by routing it from the root to

some leaf node, recursively, which provides a label for the

instance. Specifically, each node j in the tree is associated

with a binary split function: fkj(x, θ) ∈ {−1,+1}, where θ

is the parameter of the split function. Samples are sent to the

right child node if fkj(x) = 1 and to the left if fkj(x) = −1
with the process terminating at a leaf (or pure) node. Given

an input x, the output of the tree is the prediction stored at

the leaf reached by x, which is a target label y ∈ Y in our

case.

4.1. Oblique decision tree

For each gk, we employ an oblique decision tree that re-

sults in a non-orthogonal hyperplane at each decision node.

More specifically, a linear combination of the attributes is

tested as follows:

fkj(x⋄) =

{

1 if
∑M

m=1 wm ∗ x⋄m < b

−1 otherwise
, (2)

where w and b are the parameters of the hyperplane. As

we mentioned in Section 2, exhaustive search for an opti-

mal oblique hyperplane is computationally infeasible. In-

stead, we propose to learn the hyperplane from the data by

recursively clustering the data samples in a supervised man-

ner. Although any clustering method may be integrated into

this framework, we propose to use proximal support vec-

tor machine (PSVM) [34] due to its advantages detailed in

section 2. It is important to note that orthogonal decision

tree clusters data samples by employing only one feature

whereas oblique decision trees use a linear combination of

features to perform this task. In the following, we describe

how PSVM can incrementally learn supervised clusters.

4.2. PSVM learning

PSVM classifies data points depending on proximity to

either one of the two separation planes that are aimed to be

pushed away as far apart as possible. The rationale behind

PSVM is that the separation hyperplanes are not bounded

planes anymore, as done in conventional SVM [15], but

are “proximal” planes. An illustration of PSVM hyper-

planes and its relation to SVM is shown in Fig. 4. Let

X = [x1, . . . ,xN ]⊤ ∈ IRN×M be an N × M matrix ob-

tained by stacking N samples in X . The non-italicised ⊤
indicates a transpose operation. Let Y ∈ {−1,+1}N be

a vector obtained by stacking the labels of samples in X .

Here, we drop the time index t in Xt, since the following

formulation applies to any t. We define a diagonal matrix

D, whose diagonal entries Di,i = 1 if xi belongs to the pos-

itive class and -1 otherwise. Then, PSVM aims at solving

the following problem:

min
(w,b,ξ)

1

2
||ξ||2 + ν ∗

1

2
(w⊤w + b2)

s.t. D(Xw − be) + ξ = e.

(3)

where ξ is the error vector and ν is the regularization pa-

rameter, w and b are the coefficient of the hyperplane, and

e is a vector of all ones. The parameters of PSVM {w, b},

can be computed in closed form and is given by [34]:

[w; b]⊤ = (νI +H⊤H)−1H⊤De; H = [X,−e] (4)

As demonstrated in Fig. 4, unlike conventional SVM, the

planes w⊤x = b ± 1 are not bounding planes anymore.

In fact, they can be regarded as “proximal” planes, around

which the points of each class are clustered and which are

pushed as far apart as possible by the term (w⊤w + b2) in

the objective function Eq. 3.

Although it may seem counter-intuitive to use the hyper-

plane of Eqn. (4) to split the data points in each node of the

decision tree due to O(M3) time complexity of matrix in-

versions, it turns out to be more efficient in practice, since

only a small number of features Ms (usually of the order of

logM ) are used in each node.
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Figure 3. Overview of the proposed oblique random forest baseline tracker (Obli-RaF). In frame t, we sample 400 particles based on the

result of previous tracking result. Those particles are fed into the oblique random forest classifier. Each tree in the forest recursively clusters

the data samples. Each leaf node in the tree will vote for one of the two classes (target object or background). The one with maximum vote

will be considered as the tracking result. The model is updates when the number of votes is less than a threshold η. Moreover, the model is

retrained when the number of votes is less than µ (µ < η). It can be easily generated by combining with other particle filter based trackers

such as the ConvNets models in [47]. [Best viewed in color]

(a) SVM (b) PSVM

Figure 4. Separating hyperplanes of SVM and PSVM. Unlike con-

ventional SVM which aims at maximizing the margin, PSVM clas-

sifies data points depending on proximity to either one of the two

“clustering” planes that are aimed to be pushed away as far apart

as possible.

4.3. Online updates

Model update avoids target drift and thus plays an impor-

tant role in tracking performance. To this end, we propose

an efficient method to update the PSVM model parameters

when necessary.

Let De = Y and suppose at time t, we have the solu-

tion βt = [wt, bt]
⊤. We can calculate βt+1 at time t + 1

with new available data recursively from βt without directly

solving Eq. (4). The key problem in updating the parame-

ters is the calculation of (H⊤H+νI)−1. If the features cor-

responding to the new available data is Ht+1 at time (t+1),
then the problem of estimating βt+1 becomes:

minimize
β

t+1

∥

∥

∥

∥

[

Ht

Ht+1

]

βt+1 −

[

Yt

Yt+1

]∥

∥

∥

∥

2

+ ν||βt+1||
2 (5)

This is a least squares minimization problem, which leads

to the following online update of the parameters based on

recursive least squares (RLS)2:

ϕt+1 = ϕt −ϕtH
⊤

t+1(I +Ht+1ϕtH
⊤

t+1)
−1Ht+1ϕt

βt+1 = βt +ϕt+1H
⊤

t+1(Yt+1 −Ht+1βt),
(6)

where

ϕt+1 =

[

[

Ht

Ht+1

]⊤ [

Ht

Ht+1

]

+ νI

]−1

, (7)

The term Yt+1 −Ht+1βt in Eqn. (6) will be called the

innovation. Parameters over subsequent iterations remain

the same when this term is zero.

Convergence of RLS is an established theory in sig-

nal processing and it is proven to be faster than least

mean square methods for streaming data. Furthermore, our

quadratic objective function leads to a global optimum solu-

tion The proposed incremental Obli-RaF is straightforward

to implement. We firstly train an oblique random forest

from scratch. At each step t, the random forest receives

a block of incoming examples Xt, whose labels are pre-

dicted. When the true labels Yt are revealed, the oblique

random forest updates its each decision tree using Eqn. (6)

with the available misclassified data samples.

5. Implementation

We test the feasibility of the proposed Obli-RaF classi-

fier for visual tracking under two different scenarios: i) sim-

ple Obli-Raf tracker and ii) Obli-Raf tracker with ConvNet

models. We present details of both the implementations be-

low:

The Obli-RaF tracker has a simple implementation. The

video frames are first converted to gray scale, and the state

2Details regarding this derivation are provided in the supplementary

material.

5593



of the target (i.e., size and location) in the first frame is given

by the ground truth. The size of the warped image is set

to 32 × 32. The six target state parameters for each state

are set as [8, 8, 0.03, 0.005, 0.005, 0.005], respectively. We

use histogram of gradients (HOG) [16] features obtained

with a cell size of 4 and 9 different orientations to repre-

sent every bounding box. We set the number of decision

trees K to 100, the maximum depth of a tree Γdepth to 400

and the number of features used at each decision node Ms

to round(log(M)). At each step, we use 100 positive and

100 negative samples to train an Obli-RaF. The confidence

threshold η in Fig. 3 is set to 85, which is updated using

20 positive and 20 negative samples whenever necessary.

We retrain the random forest when the maximum number

of vote is less than 20. The number of particles are set to

be 100. The above parameters are fixed for all experiments.

A detailed sensitivity analysis of these parameters are pro-

vided in the supplementary material.

Obli-RaFT with ConvNet We also propose a second im-

plementation of our tracker motivated by the recent suc-

cesses of ConvNets. This bears some similarity to collabo-

rative models of [63]. To realize this, we follow the same

pipeline as in [47] to train two tiny ConvNets on feature

maps from conv4-3 and conv5-3 layers of VGG-16 [44]

model. The two ConvNets are then used to estimate a heat

map of the target object in a generative manner. Meanwhile

the proposed Obli-RaF works in a discriminative manner to

predict whether one particle belongs to the object of inter-

est or the background. The final confidence of the particle

is obtained as the sum of the confidence from our Obli-RaF

method and the confidence of the generative ConvNets. For

the ConvNets part from we adopt the same parameter set-

ting as in [47].

The proposed simple Obli-RaF tracker is implemented

in MATLAB and runs at around 3 frames per second on

a PC with Intel i7 3770 CPU (3.4 GHz). The ConvNets

based Obli-RaF tracker is implemented in MATLAB and

Caffe [26] and runs at around 2 frames per second on the

same machine with 2 TitanX GPUs.

6. Experimental Results

We firstly demonstrate the superiority of the proposed

incremental Obli-RaF method over other machine learning

algorithms with the OTB-51 benchmark[54]. Then we ex-

plore more details on the ConvNets based Obli-RaF tracker

with both OTB-51 and OTB-100 [54, 55]. Both benchmarks

contain video sequences with a variety of challenges for

visual tracking. The OTB-51 [54] evaluates 29 state-of-

the-art trackers with 51 challenging video sequences. The

OTB-100 [55] extends OTB-51 by including another chal-

lenging video sequences. To better evaluate and analyze the

strengths and weaknesses of different tracking approaches,
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Figure 5. Comparison of the simple Obli-RaF tracker to other

methods on OTB-51 [54]. Following the work of [54], precision

plots obtained with a threshold of 20 pixels are shown on the left.

Success plots measured using AUC values are shown on the right.

We see that our simple Obli-RaF method outperforms all existing

methods. Best viewed in color.

the videos are categorized with 11 attributes based on dif-

ferent challenging factors including low resolution (LR),

in-plane rotation (IPR), out-of-plane rotation (OPR), scale

variation (SV), occlusion (OCC), deformation (DEF), back-

ground clutters (BC), illumination variation (IV), motion

blur (MB), fast motion (FM), and out-of-view (OV). We

also report the results on VOT2016 in the supplementary

file.

We quantitatively evaluate trackers using precision curve

and success plot. We follow the protocol in [54, 55] and

use same parameter values for all the following evalua-

tions. More specifically, the precision curve uses a thresh-

old of 20 pixels to rank different method while in success

plot, AUC value is employed. For a comparative evalua-

tion of our method, we include several recent state-of-the-

art trackers including KCF [25], DLT [51], and CNT [58],

IMT [56],LCT [33] and the “Diagnose” framework of [50]

in our comparative analysis. Note that all the performance

plots are generated using the code library from the bench-

mark evaluation [54], and the results of KCF [25], and

DLT [51], IMT [56], CNT [58] methods are provided by

the authors.

Simple Obli-RaF tracker. We evaluate the simple Obli-

RaF tracker throughout a test sequence with initialization

from the ground truth position in the first frame and report

the average precision or success rate. Fig. 5 shows the re-

sults of the simple Obli-RaF tracker under one-pass evalua-

tion (OPE).

The proposed oblique random forest tracker ranks first in

both cases. In the precision plot, the proposed RaF tracker

achieves a precision score of 0.8, which outperforms the

best results of [50] by 4%. Furthermore, the RaF tracker

achieves an AUC value of 0.58, which outperforms the sec-

ond best method by around 2%. Note that the second best

tracker is obtained by the best combination of 5 different

feature extraction, 4 different classification/regression mod-

els, 3 different motion models and 2 different motion update
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strategies. Most of the trackers involved in this evaluation

are based on hand-crafted features. For example, the well-

known Struck tracker [24] employs Haar-like features and

relies on structural SVM for online learning. These promis-

ing results demonstrate the effectiveness of the proposed

online Obli-RaF methods.
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Figure 6. The precision (left) and success plots (right) of OPE of

the proposed method and other advanced trackers on OTB-51.

Obli-RaF Vs Orth-RaF. In order to assess the advantages

of the online Obli-RaF, we also implemented an orthogonal

random forest (Orth-RaF) tracker based on [41]. Table 1

compares the precision score (within 20 pixels) and Table 2

compares the success rate (AUC). Clearly, the proposed

oblique random forest outperforms the orthogonal random

forest in all cases.

As noted earlier (section 1), there are two main reasons

for the observed performance gap: (i) flexibility of Obli-

RaF which is not restricted to be axis aligned to the coor-

dinate system of the input features, and (ii) efficient online

update procedure of our method which better captures vari-

ations in the target object. On the other had Orth-RaF [41]

lacks both (i) and (ii).

Obli-RaF tracker with ConvNets. Next, we evalu-

ate our Obli-RaF tracker in combination with ConvNets

and compare it with recently proposed trackers including

MEEM [57], SRDCF [17], HCF [32], and FCNT [47] on

both OTB-51 and OTB-100 datasets.

From Fig. 6 we see that our proposed collaborative

(Obli-RaF + ConvNets) method outperforms all other meth-

ods in terms of precision curve and achieves competitive re-

sults on success plots. More specifically, our collaborative

model, which consists of FCNT [47] and Obli-RaF tracker,

achieves 5.5% and 1% improvement over FCNT tracker on

precision and success measures respectively. We present a

more detailed analysis on the advantage of this combination

in supplementary file.

We also report the performance of the proposed Obli-

RaF + ConvNets tracker in terms of temporal robustness

evaluation (TRE) and spatial robustness evaluation (SRE).

They evaluate trackers by starting at different frames (per-

turbation by sampling initialization temporally) and initial-

izing with different bounding boxes (perturbation by sam-

pling initialization spatially), respectively. Results are pre-

sented in Fig. 7. Our proposed method achieves the first

and second rank on the precision curve of SRE and TRE,

respectively. In Fig. 8, 9 and 10, we also present our results

comparing the proposed Obli-RaF + ConvNets tracker with

several state-of-the-art methods on OTB-100 dataset.

We observe that the proposed method achieves com-

petitive results compared to other state-of-the-art meth-

ods. More specifically, our method achieves the best per-

formance in terms of precision plot of OPE. As shown

in Fig.8(a), our result is 1.4% better than the second best.

It also achieves the second best on the TRE and SRE met-

ric in Fig. 9(a) and Fig. 10(a). For the success plot, which

uses AUC value to rank each method, our method’s perfor-

mance is still below that of the SRDCF [17] tracker. How-

ever, the SRDCF tracker estimates scale variations explic-

itly by employing a dedicated model. However, this strat-

egy also works to its disadvantage in the precision curves

of Fig.8(a), 9(a) and 10(a), where it is 6.2% lower than our

method. Note that our method estimates the object’s state

variation using only the commonly used particle filter and

no other model to estimate scale changes. Nevertheless, it

outperforms SRDCF in the precision curves in all the cases

and performs competitively on the success plots of Fig.8(b),

9(b) and 10(b).

Computational complexity. The overall complexity of our

oblique decision tree it is O(N ∗M3
s ), while the complexity

of an orthogonal decision tree is O(MsN(log2N)). How-

ever, only a few features (Ms = logM in this study) are

sampled at each internal node for many tasks such as vi-

sual tracking where a large number of training samples ac-

cumulate over time, resulting in Ms ≪ logN . Thus, in

practice, Obli-RaF has a smaller time complexity than Orth-

RaF. This is also far less compared to CART-LC [10] Obli-

RaF method which has O(NMs) complexity. Moreover, our

tree induction method also results in shallow trees and thus,

more efficient. On average, the proposed simple Obli-RaF

tracker runs 3 times faster than the orthogonal one (more

details on this and sensitivity analysis are in supplementary

material).

7. Conclusion

In this paper, we proposed a novel oblique random for-

est for visual tracking. In each node of the tree, a deci-

sion was learned by clustering the data reaching the node

into two groups via efficient PSVM classifier. The result-

ing Obli-RaF can better capture the geometric structure of

the data and usually leads to smoother decision boundaries.

This is in contrast to previous methods which exhaustively

search for the best feature to split the data. Furthermore, we

also proposed an algorithm to efficiently update the classi-

fier in order to alleviate tracking drift. Through extensive

experimental evaluation we showed that the proposed Obli-
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Table 1. Comparison between Orthogonal Random Forest and Oblique Random Forest on the precision score of OTB-51 (within 20 pixels).

Method overall IV SV Occ Def MB FM IR OR OV BC LR

Orth-RaF 67.4 60.0 62.5 66.8 59.5 57.4 54.9 57.0 66.4 45.9 58.8 58.0

Obli-RaF 80.0 80.5 80.0 73.5 70.9 73.6 73.0 79.1 77.8 68.8 77.1 60.3

Table 2. Comparison between Orthogonal Random Forest and Oblique Random Forest on the success rate of OTB-51 (AUC).

Method overall IV SV Occ Def MB FM IR OR OV BC LR

Orth-RaF 48.1 42.8 44.7 47.8 41.8 41.6 40.4 42.9 47.6 37.3 42.7 28.0

Obli-RaF 58.0 58.8 58.2 53.4 52.2 56.0 55.2 56.7 55.6 54.5 55.7 46.1
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Figure 7. Precision (left) and success plots (right) of TRE and SRE for the proposed method and other advanced trackers on OTB-51.
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Figure 8. OPE on OTB-100.
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Figure 9. TRE on OTB-100.

RaF tracker with simple HOG features outperforms many

other state-of-the-art methods. When combined with a gen-

erative ConvNet based model, in a collaborative manner,

our method resulted in a more powerful tracking framework

comparing well with other advanced trackers.
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