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Abstract

Integrating complementary features from multiple chan-

nels is expected to solve the description ambiguity problem

in video captioning, whereas inappropriate fusion strate-

gies often harm rather than help the performance. Existing

static fusion methods in video captioning such as concate-

nation and summation cannot attend to appropriate feature

channels, thus fail to adaptively support the recognition of

various kinds of visual entities such as actions and object-

s. This paper contributes to: 1)The first in-depth study of

the weakness inherent in data-driven static fusion methods

for video captioning. 2) The establishment of a task-driven

dynamic fusion (TDDF) method. It can adaptively choose

different fusion patterns according to model status. 3) The

improvement of video captioning. Extensive experiments

conducted on two well-known benchmarks demonstrate that

our dynamic fusion method outperforms the state-of-the-art

results on MSVD with METEOR scores 0.333, and achieves

superior METEOR scores 0.278 on MSR-VTT-10K. Com-

pared to single features, the relative improvement derived

from our fusion method are 10.0% and 5.7% respectively

on two datasets.

1. Introduction

Automatically generating natural and accurate language

descriptions for videos is one of the ultimate goal of video

understanding. Although early work in video captioning

borrows insight from image captioning [29], the task is

much more challenging due to various objects and complex

human actions.
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� Ground truth: guys on mat wrestling

� LSTM: a group of people are dancing on a track

� LSTM + TDDF: two men are wrestling on a mat

� Ground truth: a person is mixing a bowl of food

� LSTM: a person is cooking

� LSTM + TDDF: a person is mixing salad in a bowl

Figure 1. Examples of video description generation. Top: LST-

M misunderstands the action ‘wrestling’ as ‘dancing’. Our LSTM

+TDDF correctly recognizes the action ‘wrestling’. Bottom: L-

STM generates vague description ‘cooking’. Our LSTM +TDDF

generates informative ‘mixing’, ‘salad’ and ‘bowl’.

Despite large progress in video captioning, existing

methods often suffer from description ambiguity, including

recognition error and detail deficiency. Taking the LSTM

results in Figure. 1 for example, the verb ‘wrestling’ is in-

correctly recognized as ‘dancing’ in the description of the

first video, while details such as ‘mixing’ and ‘bowl’ are

missing for the second one.

It is well known that different visual cues make different

contributions to the recognition of various video content.

Integrating complementary features from multiple chan-

nels is expected to solve the description ambiguity prob-

lem [11, 9, 8, 21, 34, 37, 3, 40, 22, 26, 39]. While differ-

ent fusion methods such as concatenation and summation

have been used in video captioning, the relative increase

obtained by fusing multiple-channel visual features is only

0.1%–1.7% [11] or even -0.7% [26]. It reveals that existing

visual fusion strategies in video captioning have not made

full use of each channel of features and their correlation.
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We observe that most visual entities in video descrip-

tions could be divided into three categories: 1) appearance-

centric 2) motion-centric and 3) correlation-centric. As

shown in Figure. 1, in the sentence ‘a person is mixing sal-

ad in a bowl’, the visual entities ‘person’ and ‘mixing’ can

be easily recognized through appearance and motion fea-

tures respectively. As to details such as ‘salad’ which is

hard to infer due to clutter, the correlative constraints be-

tween motion and appearance make it possible to deduce.

Theoretically, feature concatenation [23] is capable of mod-

eling various correlation across features, but in practice the

improvement is often limited in video captioning. It main-

ly because the unbalance distribution of object-related en-

tities and action-related entities in video description. For

example, there are 36% nouns and 19% verbs in the train-

ing descriptions of MSR-VTT-10K dataset [11], which is

also the case in most video captioning datasets. Therefore,

in the data-driven fusion method such as feature concate-

nation, the appearance features are often enhanced, while

motion features are suppressed. Such static fusion models

cannot adaptively support the recognition of three different

kinds of visual entities, which result in description ambigu-

ity, including recognition error and detail deficiency.

To alleviate description ambiguity, we propose a task-

driven dynamic fusion approach which can adaptively at-

tend to certain visual cues based on the current model status,

so that the generated visual representation will be most rele-

vant to the current word. The fusion model consists of three

different fusion patterns, which support the recognition of

three kinds of visual entities separately. The proposed fu-

sion approach consists of two steps. 1) Temporal Atten-

tion. For different feature channels, we selectively focus

on relevant temporal points according to current model sta-

tus. 2) Dynamic Fusion. Three different fusion patterns are

designed to support the recognition of appearance-centric,

motion-centric and correlation-centric entities. The fusion

model learns to dynamically choose one of the three fusion

patterns appropriately according to task status.

In summary, we make the following contributions:

∙ In-depth study of the weakness inherent in data-driven

static fusion methods for video captioning. Existing

static fusion methods cannot adaptively support the

recognition of various kinds of visual entities, which

results in description ambiguity, including recognition

error and detail deficiency.

∙ A task-driven dynamic fusion (TDDF) model is pro-

posed to adaptively choose different fusion patterns ac-

cording to task status. The dynamic fusion model can

attend to certain visual cues that are most relevant to

the current word. Through learning correlativity con-

straints between multiple visual channels, the recogni-

tion of all the appearance-centric, motion-centric and

correlation-centric entities can be promoted, thus re-

ducing ambiguity in video description.

∙ Extensive experiments conducted on two well-known

video captioning benchmarks, MSVD and MSR-VTT-

10K demonstrate that our dynamic fusion method

achieves noticeable gains by appropriately integrating

multiple-channel features. Compared to single fea-

tures, the relative improvement derived from our fu-

sion method are 10.0% and 5.7% respectively on two

datasets.

2. Related work

Video/Image Captioning: The work on video/image

captioning can be divided into two categories: the bottom-

up approaches [9, 13, 6] and top-down approaches [18, 37,

35]. The bottom-up approaches first recognize the visual

concepts and form them into a description through sentence

templates. Appropriate features are used to detect those

concepts separately: motion features for actions [28, 16, 7];

different kinds of appearance features for objects, attributes

and scenes [32]. Therefore, the correlation between the bot-

tom features and the co-occurrence of the top visual con-

cepts are not fully explored. The top-down approaches are

the state-of-the-art ones, which formulate the task into a

whole encoder-decoder framework of machine translation.

The recognition of visual concepts is implicitly achieved

during the sentence generation. Relatively few work in

video captioning focuses on the generation of a good task-

specific visual representation, except for the recent work of

Pan [18]. Pan [18] mainly aimed at capturing temporal in-

formation in video representation. Our proposed in-depth

study of the fusion of motion and appearance information

in video captioning generates a joint representation by pro-

moting individual feature channels and correlating compli-

mentary features according to task status.

Feature Fusion: All the existing feature fusion meth-

ods in video caption are static fusion, which means the

visual fusion model is not affected by the previous gen-

erated target words. The work includes score-level de-

cision fusion [31, 28] and early-stage feature combina-

tion [11, 19, 3, 22, 26]. Decision fusion is achieved by

averaging a set of network predictors. However, the deci-

sion fusion is not data-driven, since discrepant prediction

capabilities on different samples of the individual features

are neglected. Feature combination is data-driven, which

combines motion and appearance features through concate-

nation, summation or maximization. However, the perfor-

mance improvement by feature combination is either limit-

ed [11](relatively 0.1%–1.7% improvement) or even worse

than the single features as reported in many work [3, 22, 26].

Our proposed dynamic fusion model can adaptively choose

different fusion patterns according to task status.
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Figure 2. Illustration of task-driven dynamic fusion (TDDF) in video captioning. The blue lines are motion features, the green lines are

appearance features, and the red lines are information flows between LSTM and TDDF. Motion features, appearance features and model

status information are inputs to TDDF unit. As long as the output word is not EOS (i.e. end of sentence), the the encoder part TDDF unit

will generates a dynamic visual inputs to each iteration of the LSTM decoder. The details of TDDF are shown in Figure.3.

Attention: Visual attention [36, 35, 37] is widely ap-

plied in captioning task to selectively focus on a subset of

temporal frames of video or spatial regions of images. The

brilliant idea behind attention is to consider task status into

the feature encoding part. In attention mechanism, the tar-

get word is generated based on the most relevant frames and

regions. The relevance is measured by the previous gener-

ated existing words, which represent the task status. Our

work is closely related to attention mechanism in the sense

of task-driven dynamic concentration on the visual feature

part. However, there is a significant difference between

our dynamic fusion and the wildly used attention mechanis-

m.The attention mechanism deals with homogeneous fea-

tures extracted from different samples (frames or regions).

Our dynamic fusion deals with heterogeneous features even

from the same sample. Therefore, in attention, the content

of visual features will determine the relevance of it to the

sentence context. In dynamic fusion, not the feature content

but the kind of the feature will determines its relevance. As

a result, the attention mechanism attends to certain visual

concepts like the region of a dog or a short clips of running

dog. Our dynamic fusion is built upon attention and extends

it one step further, which automatically determines whether

the appearance of the dog, or the movement of the dog, or

the combination should be focused.

3. Video Description with Task-Driven Dynam-

ic Fusion

3.1. Overall Framework

We build our video captioning framework upon the pop-

ular ConvNet + LSTM architecture [30, 20, 36, 19], which

consists of the encoder part and the decoder part as shown

in Figure. 2. The encoder part aims at learning a good

visual representation and the decoder part preforms lan-

guage generation. The video input is represented as a tem-

poral sequence V = {v1, ...,vn}, consisting of motion

and appearance features vi = [vmi,vsi] extracted from

video frames and clips. The output is the words sequence

Y = {�1, �2.., ��} describing the video. In the baseline

model [30], the visual features are inputs to the zeroth round

of LSTM iteration. However, it is unrealistic to cram the

visual information of the whole video into a single vector.

Therefore, we follow the implementation of [35, 36] to in-

troduce visual features at each time of the word generation.

This requires adding a new visual input path �t(V) to the

LSTM cell formulated as follows:

it = �(��E[��−1] + ��ht−1 +���t(V) + bi) (1)

ft = �(��E[��−1] + ��ht−1 +���t(V) + bf ) (2)

ot = �(��E[��−1] + ��ht−1 +���t(V) + bo) (3)

gt = �(��E[��−1] + ��ht−1 +���t(V) + bg) (4)

ct = ct−1 ⊙ ft + it ⊙ gt (5)

ht = ot ⊙ �(ct) (6)

where � is sigmoid function, � is tanh function, ��−1 is the

previous word, ℎ�−1 is the previous hidden state, and ��(� )
is the dynamically fused visual feature vectors, which en-

able us to dynamically adjust visual input according to the

task status. This will be explained in details in the follow-

ing sections. The probability distributions over the set of
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possible words are obtained through a single hidden layer:

ŷt = �������(���(��[ht, ��(� ),E[��−1]]) +dy) (7)

where [ht, ��(� ),E[��−1]] denotes the concatenation of

the three vectors.

We further enhance the encoder part by adding the task-

driven dynamic fusion layer as shown in Figure. 2. First,

we extract and select a variable-length motion and appear-

ance features, and generate two channels of video represen-

tation through a temporal attention mechanism as explained

in Section 3.2. Then, we dynamically combine different

feature channels according to the sentence context, as ex-

plained in Section 3.3.

3.2. Temporal Attention

In this section, we encode the variable-length video in-

put V = {v1, ...,vn} into a sentence-length temporal rep-

resentation �(V) = {�1(V), �2(V), ..., ��(V)}. Each

of the ��(V) is the weighted sum of all the � visual fea-

tures through an attention mechanism. The input video fea-

tures vi contain both appearance feature and motion feature

vi = [vmi,vsi].
The traditional dynamic attention strategy [35] does not

differentiate the appearance and motion features, where

��(V) =
∑�

� �
(�)
� vi, and �

(�)
� reflects the relevance of

the i-th visual feature to the t-th word ��. Intuitively, the

static appearance features and motion features have dif-

ferent relevance to verbs and nouns, so we assign soft at-

tention to different features separately. In particular, the

attention process is applied to static appearance features

VS(�) =
∑�

� ��
(�)
� vsi and motion features VM(�) =∑�

� ��
(�)
� vmi. This sophisticated version of attention al-

lows feature channels have different temporal length � if

necessary. Finally, the visual input for the inference of the

t-th word �� is the combination of appearance and motion,

��(V) = [VM(�),VS(�)].

The attention function is used to calculate ��
(�)
� and

��
(�)
� , which takes the previous hidden state h�−1 of the

LSTM decoder and the i-th temporal features as inputs.

��
(�)
� = �(ht−1,vs�), (8)

��
(�)
� = �(ht−1,vm�) (9)

The attention function � is implemented by a multi-layer

perceptron (MLP) as in [33],which has an universal approx-

imation property.

�(ht−1,v�) =���(�ℎht−1 +��v�) (10)

where ��,�ℎ �� are parameters to be estimated, and �ℎ

are shared by motion and appearance features, while �� is

feature dependent. Once the attention score for all the tem-

poral segments are computed, we normalize them through

softmax function ��
(�)
� = ���{��

(�)
� }/

∑�

�=1 ���{��
(�)
� }.

3.3. Dynamic Fusion

…
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h
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h
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dynamic visual inputs
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…
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Dynamic weighing

VS(t) VM(t)

Figure 3. Illustration of the task-driven dynamic fusion unit. Mo-

tion features, appearance features and model status information are

inputs to TDDF unit. TDDF unit generates a dynamic visual in-

puts to each iteration of LSTM decoder. There are three pathway:

p1 is appearance pathway, p2 is motion pathway and p3 is correla-

tion pathway. Layer 1 performs temporal attention on motion and

appearance features separately. Layer 2 performs feature learning.

Layer 3 performs concatenation fusion. Layer 4 performs dynamic

fusion, choosing appropriate pathway relevant to the current word.

We further dynamically combine motion and appear-

ance features VM(�),VS(�) to get the fused representation

�t(V) = VMS(�). We first introduce two kinds of basic

shallow fusion functions: concatenation fusion and sum or

max fusion. Then we illustrate the proposed dynamic fu-

sion.

1) Concatenation fusion. The fusion function is

VMS(�) = WF([VM(�),VS(�)]� )

= WFl
VM(�) +WFr

VS(�) (11)

where motion features and appearance features are concate-

nated together [VM(�),VS(�)]� ∈ ℝ
��+�� . The con-

volves with parameters WF ∈ ℝ
�×(��+��) reduce the

fused output dimension to � . The concatenation fusion

is widely applied in multi-modal learning [17] and recent

inception module in GoogLeNet [25, 24]. The concatena-

tion fusion is capable of modeling correlations within and

across features. However, the fusion parameters are fixed

once learned.

2) Sum or max fusion. The fusion function is the

element-wise sum VMS(�) = VM(�) ⋅ +VS(�) or the

element-wise max VMS(�) = max{VM(�),VS(�)}.

These parameter-free fusion functions usually applied to

features of same kind so the element-wise addition or max
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is reasonable. Sum fusion is applied to the shortcut connec-

tion in Residual Network [10] and the combination layers

in FractalNet [14]. However, different from concatenation

fusion, sum or max fusion can hardly model the correlation

between different dimensions of heterogeneous features.

3) Dynamic fusion. We propose a fusion function

that is the element-wise weighted-sum of feature channels

VMS(�) = �
(�)
�1
VM(�) ⋅+�

(�)
�2
VS(�). Therefore, the sum or

max fusion can be transformed to a special case of the dy-

namic weighted-sum fusion. Different from the projected

shortcuts in Residual Network [10] where the weights are

fixed parameters, �
(�)
�1

and �
(�)
�2

are dynamically determined

by the task status ht−1. The idea of dynamic fusion is sim-

ilar to the idea of attention mechanism [33, 36, 35] in the

sense that both of them deal with how well the inputs are

related to the target words. However, attention mechanism

deals with homogeneous features extracted from differen-

t samples �� with �
(�)
��

= �(ht−1, ��), where the feature

content �� will determine the attention weights. Dynam-

ic fusion deals with heterogeneous feature channel �� with

���
= �(ht−1, ��) := ���

(ht−1). The fusion weights are

determined by the type of the feature �� instead of the con-

tent of the feature. Similar to the sum fusion, the element-

wise weighted-sum hardly models the correlation between

multiple features, and it is not reasonable to do element-

wise addition for heterogeneous features.

In design of task-driven dynamic fusion (TDDF) unit, we

take advantage of the above three kinds of fusion functions,

which are related and complimentary. As shown in Fig-

ure. 3, the inputs of TDDF unit are motion features VM(�),

appearance features VS(�), and model status information

ht−1. The outputs of TDDF unit are dynamic visual in-

puts to each iteration of the LSTM decoder. In the begin-

ning, motion features and appearance features separately go

through a fully connected feature learning Layer 2 to gen-

erate motion pathway and appearance pathway. Through

Layer 2, we reduce the original feature dimension to ob-

tain better representations, which are effective to fuse and

reasonable to perform the following element-wise addition.

Then, the followed concatenation fusion Layer 3 is used to

combine the refined motion and appearance features, and

generates the correlation pathway. At last, we apply a dy-

namic fusion Layer 4 on the top of motion, appearance and

correlation pathways. The three pathways correspond to

three different fusion patterns that are designed to support

the recognition of appearance-centric, motion-centric and

correlation-centric entities in video description. Dynamic

fusion Layer 4 learns to adaptively choose one of the three

fusion patterns according to task status through a dynamic

weighing mechanism. In particular, the dynamic weights

a(�) for all three pathways are obtained through:

s(�) = �������(W�ht−1 + b�), (12)

c(�) = �(W�ht−1 + b�), (13)

a(�) = s(�)
�
c(�), (14)

where s(�) ∈ ℝ
3 determines the most relevant pathway a-

mong all three, and c(�) ∈ ℝ
3 determines whether each

channel is relevant to the description context ht−1. For the

specific feature channel ��, the weights is:

�(�)��
= ���

(ht−1) = �(�)��
⋅ �(�)��

, (15)

In training, the feature is chosen by minimizing �(s):

�(s) = −

�∑

�

(
∑

��

(�(�)��
���(�(�)��

))), (16)

The optimum s should be one of [1, 0, 0],[0, 1, 0] and

[0, 0, 1], which determines the most relevant feature path-

way. The result of the sparse s(�) makes the shortcut be-

tween the Layer 2 and Layer 4, which enables to automat-

ically skip feature pathways to promote individual feature

channel.

4. Experiments

4.1. Dataset and Evaluation Metrics

Dataset: We conduct the experiments on two video cap-

tioning benchmarks: MSVD [1] and MSR-VTT-10K [11].

MSVD [1] consists of 1,970 video clips. Almost all the

existing video captioning methods have been tested on this

dataset. We adopt the widely-used train and test splits pro-

vided by [29, 35], with a training set of 1,200 video clips,

a validation set of 100 clips and a test set consisting of the

remaining clips. MSR-VTT-10K [11] consists of 10,000

video clips, which is the most challenging dataset for video

captioning to date. We used the official split 1 with 6,513

videos for training, 497 for validation and 2,990 for testing.

We report the results on both the validation and test splits

on MSR-VTT-10K.

Evaluation Metrics: Several standard metrics such as

BLEU(precision-based), METEOR(harmonic mean of pre-

cision and recall), CIDEr(consensus-based), and ROUGE-

L (recall-based) are used for evaluating the video caption-

ing [2]. We utilize the Microsoft COCO evaluation serv-

er [2] and report all the four metrics. Among the four met-

rics, METEOR and CIDer are now regarded as the better

ones [27, 18, 28, 37].

4.2. Implementation Details

Features: For appearance features, we adopt 4,096-

dimensional fc6 layer from VGG-19 and 1,024-dimensional

pool5 layer from GoogLeNet-bu4k [15], a variant of

1http://ms-multimedia-challenge.com/
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Table 1. Performance evaluation on MSVD

METEOR (%↑) CIDEr (%↑) ROUGE-L (%↑) BLEU4 (%↑)

VGG 0.302 - 0.563 - 0.675 - 0.416 -

C3D 0.303 - 0.542 - 0.667 - 0.412 -

CON(VGG+C3D) 0.317 (4.6%↑) 0.652 (15.8%↑) 0.680 (0.7%↑) 0.428 (2.9%↑)

MAX-2(VGG+C3D) 0.308 (1.7%↑) 0.558 (-0.9%↑) 0.675 (0%↑) 0.417 (0.2%↑)

SUM-2(VGG+C3D) 0.307 (1.3%↑) 0.654 (16.1%↑) 0.681 (0.9%↑) 0.438 (5.3%↑)

MAX-3(VGG+C3D) 0.313 (3.3%↑) 0.663 (17.7%↑) 0.687 (1.8%↑) 0.452 (8.6%↑)

SUM-3(VGG+C3D) 0.314 (3.6%↑) 0.602 (6.9%↑) 0.684 (1.3%↑) 0.440 (5.8%↑)

TA [35] 0.296 - 0.517 - - - 0.419 -

LSTM-E [19] 0.310 (3.7%↑) - - - - 0.453 (8.6%↑)

h-RNN [37] 0.326 (4.8%↑) 0.658 (6.0%↑) - - 0.499 (2.2%↑)

HRNE [18] 0.331 - - - - - 0.438 -

TDDF(VGG+C3D) 0.333 (10.0%↑) 0.730 (29.7%↑) 0.697 (3.3%↑) 0.458 (10.1%↑)

*fusion method has relatively (%↑) improvement over the best single features

GoogLeNet [25]. For motion features, we adopt the 4,096-

dimensional fc6 layer from C3D [5] pre-trained on Sports-

1M video dataset [12]. We take continuous 16 frames as the

input short clips for the C3D, similar as [5, 11]. At last, we

select 28 equally-spaced frame appearance features and clip

motion features as the visual inputs, similar as [35].

Model and Training: The overview of our video cap-

tioning architecture is shown in Figure 2. The size of hidden

layer in LSTM is 1024. As MSR-VTT-10K is much larger

than MSVD, we use two-layer LSTM on MSR-VTT-10K

and one-layer LSTM on MSVD. The proposed task-driven

dynamic fusion unit is shown in Figure 3, Layer 2 and Lay-

er 3 are fully connected layers with tanh function as activa-

tion. The dimensionality of Layer 2 is 1024 for each input

feature channel, the dimensionalities of Layer 3 and Layer

4 are 1024 respectively. As for the parameters in tempo-

ral feature selection �ℎ ∈ ℝ
1024×1024 and va ∈ ℝ

1024.

In training, we use the Adadelta algorithm [38] with gradi-

ents computed by back propagation algorithm. The model is

trained end-to-end by minimizing negative log-likelihood:

� = −���(� (Y∣V)) + �(as) + �(am) + �(s) (17)

While predicting the word, we regularize the attention

weights to enforce the completeness of attention paid to

every temporal feature when generating the complete sen-

tence. The regularization function is similar to [35, 33]:

�(as) = −
�∑

�

(1−
�∑

�

����)
2 (18)

4.3. Experimental Results

Baseline Methods: First, we compare our task-driven

dynamic visual fusion method (TDDF) with single feature

methods, denoted as VGG, GoogLeNet, and C3D. Then,

as stated in Section 3.3, our TDDF unit takes advantage of

static fusion, so we compare to these methods: concatena-

tion fusion denoted as CON, sum fusion denoted as SUM

and max fusion denoted as MAX. CON simply concatenates

the features on Layer 2 and feeds it to Layer 4. SUM-2 or

MAX-2 adds or maximizes the results on Layer 2. SUM-3

or MAX-3 adds or maximizes the results both on Layer 2

and Layer 3 to form the fused representation.

State-of-the-art Methods: On MSVD, we compare to

three methods: TA [35], LSTM-E [19], h-RNN [37] and

HRNE [18]. TA is the first work applying temporal at-

tention in video captioning. LSTM-E simultaneously ex-

plores the learning of LSTM and visual-semantic embed-

ding. h-RNN explores both temporal and spatial atten-

tion in video captioning. HRNE aimes at learning a task-

specified video representation for video captioning. h-RNN

and HRNE report the best results on MSVD at present.

On MSR-VTT-10K, there are relatively less work. We

compare to three methods:SA-LSTM [11], C3D+Res [26],

v2t nagvigator [4]. SA-LSTM is the baseline method pub-

lished along with the MSR-VTT-10K dataset, but it is done

on a different split from ours. It uses a two-layer LSTM

with temporal attention mechanism. C3D+Res [26] inves-

tigates multimodal fusion. Though the whole framework

incorporates audio modality, we compare with their visual

fusion results. v2t nagvigator [4] is the best result on the

leader board 2. As some work also fuses multiple features

and reports the results before and after fusion, we present

their relative improvement by fusion methods.

Results on MSVD: We report the results on MSVD in

Table. 1. Our task-driven dynamic visual fusion method

achieves the best METEOR and CIDEr scores among all the

methods. We also report the relative improvement obtained

2http://ms-multimedia-challenge.com/leaderboard
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Table 2. Performance evaluation on MSR-VTT-10K

Test split Valid split

BLEU4 METEOR CIDEr ROUGE-L BLEU4 METEOR CIDEr ROUGE-L

VGG 0.338 0.263 0.384 0.569 0.330 0.265 0.365 0.564

C3D 0.363 0.263 0.397 0.575 0.340 0.264 0.377 0.569

GoogLeNet 0.328 0.268 0.398 0.559 0.317 0.267 0.389 0.555

CON(GoogLeNet+C3D) 0.368 0.267 0.406 0.583 0.364 0.273 0.392 0.581

SUM-2(GoogLeNet+C3D) 0.340 0.258 0.382 0.570 0.332 0.260 0.371 0.564

MAX-2(GoogLeNet+C3D) 0.353 0.261 0.374 0.584 0.361 0.267 0.381 0.584

v2t nagvigator [4] 0.408 0.282 0.448 0.609 0.394 0.275 0.480 0.600

C3D+Res [26] - - - - 0.385 0.267 0.411 0.601

(relative improvement%↑) - - - - (-0.1%↑) (-0.7%↑) (2.8%↑) (-0.6%↑)

SA-LSTM(VGG+C3D) [11]* 0.405 0.299 - - - - - -

(relative improvement%↑) (0.9%↑) (1.7%↑) - - - - - -

TDDF(GoogLeNet+C3D) 0.372 0.277 0.441 0.586 0.367 0.280 0.434 0.587

(relative improvement%↑) (2.5%↑) (3.3%↑) (10.8%↑) (1.9%↑) (7.9%↑) (4.9%↑) (11.5%↑) (2.1%↑)

TDDF(VGG+C3D) 0.373 0.278 0.438 0.592 0.355 0.282 0.427 0.591

(relative improvement%↑) (2.7%↑) (5.7%↑) (10.3%↑) (2.9%↑) (4.4%↑) (6.4%↑) (13.2%↑) (3.9%↑)

*tested on different split

Ground truth: Two football players are running

CON: A person is explaining something 

TDDF: Football players playing football

Ground truth: A man is playing with his engine

CON: A man is working on a car 

TDDF: A man is fixing a car engine

Ground truth: Animation man puts flowers on grave

CON: A man is talking about something

TDDF: Someone is playing minecraft

Ground truth: A woman advertises a stroller

CON: A woman is talking about a stroller 

TDDF: A woman demonstrates how to use stroller

Ground truth: A cartoon bird flies against the air blown 

from a fan

CON: A band performs on stage

TDDF: Sponge bob square pants is talking to squid ward

Ground truth: A woman is giving a cooking 

instructional video

CON: A woman is cooking a dish in a pan 

TDDF: A woman adds ingredients to a pot of water

A C MA A AA A A A C C M A A M M

A A A A A A AM M M M M M M M MC C C C C C C

Figure 4. Examples to show a dynamic focus on different feature channels for different words in video captioning. The arrows show which

features are used in determining the current words. Blue arrow represents motion features, green arrow represents appearance features and

orange arrow represents the combination of motion and appearance. The red box shows the failed cases.

by all the fusion method. Compared to the methods using

single features, our method obtains 10% relative improve-

ments in terms of METEOR, and 29.7% relative improve-

ments in terms of CIDEr. These two consensus-based met-

rics reward a sentence for being similar to the majority of

human written descriptions. Our TDDF is capable of adapt-

ing and promoting the visual features according to the de-

scription context, therefore it generates better visual repre-
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sentation suitable for different sentences that share a similar

context. The baseline static fusion methods also have im-

provement over the single feature methods. Our method is

better than MAX-2 and SUM-2, suggesting that considering

the feature correlation is necessary. Although CON, MAX-

3 and SUM-3 considered the feature correlation through a

concatenation fusion layer, they still perform worse than our

fusion method. The experiments suggest that both the fea-

ture correlation and the dynamic selection among features

are crucial in our task. TA [35] applied the attention mecha-

nism on the concatenated feature channels, and our method

outperforms it by 9.3% relatively, which shows that the fu-

sion strategy after attention mechanism is better. Compared

to LSTM-E [19], h-RNN [37] and HRNE [18], our method

achieves best results in METEOR and CIDEr. This result

confirms the effectiveness of our TDDF. We notice that h-

RNN [37] outperforms the others in terms of BLEU. While

h-RNN proposed a better language model which can utilize

multiple descriptions of a video at one time, our work, how-

ever, is focusing on fusing a good visual feature to improve

the encoder part, not the language decoder part. Besides,

METEOR and CIDEr are considered to be more reliable

than BLEU [27, 18, 28, 37]. h-RNN [18] also made a com-

parison between single feature and fused features. Their

relative improvement obtained by the fusion method is less

than our fusion method.

Results on MSR-VTT-10K: We report the results on

MSR-VTT-10K in Table. 2, shown that our method outper-

forms the single feature methods by 3.3%–5.7% relative-

ly in terms of METEOR and 10.3% –10.8% relatively in

terms of CIDEr. On this challenging dataset, the basic fu-

sion methods CON, MAX-2 and SUM-2 hardly have any

improvements over single features, which is consistent with

the finding in [11, 3, 22, 26]. This is mainly because the hu-

man descriptions of the same video are more diverse on this

challenging dataset. Therefore, the fusion methods in the

task of video caption is worth exploring. In terms of ME-

TEOR and CIDEr, our method outperforms C3D+Res [26]

method, which fused the C3D and the appearance feature

from residual network [10]. In terms of the precision-based

BLEU4 which tries to give more weights on human-like

grammatically correct sentences, C3D+Res performs bet-

ter. Considering the fact that 836 out of 23,667 words in

MSR-VTT-10K sentences are misspelled (e.g., ‘basktball’

and ‘peson’) [26], it is much more challenging for caption-

ing on this dataset if the misspelling is not corrected. As to

SA-LSTM(VGG+C3D) [11] and v2t nagvigator [4], both

of them has a higher performance than our method. For

SA-LSTM(VGG+C3D), it is done on a different split from

our available data, which makes it inappropriate to compare.

For v2t nagvigator, it utilizes extra data to train action and

object detectors and applies theses detectors to pre-process

the videos, meanwhile sentence re-ranking methods are al-

so used to post-process the generated sentences. However,

we aim to improve the visual encoder part, which has fun-

damental differences from their method.

Qualitative Analysis: In Figure. 4, we visualize the dy-

namic weights s(�) for different feature channels. Though

s(�) is not the final fusion weights a(�), it serves as a auto-

matic switch to give us intuition in what features the model

is focusing on to predict the current word. The blue arrow

represents motion inputs, the green arrow represents appear-

ance inputs, and the orange arrow represents the correlated

motion and appearance inputs. As seen from Figure. 4, the

green arrows (the appearance features) dominate the gen-

eration of most words. The nouns ‘car’ and ‘engine’ are

learned from the appearance features and the verb ‘fixing’

is learned from the motion features. Moreover, the ‘football

players’ is inferred from the correlated motion and appear-

ance inputs. When there is no visual ‘football’ in the video,

our model pays attention to the action cue to guess the ‘foot-

ball’, verifying that the motion features still contribute to

the recognition of nouns. We also show that our method is

failed to describe some animation films. These failure cases

show the limitation of our current method. The predicting

of the wrong action ‘playing’ will pass down misleading

context to predict the noun ‘minecraft’. Our approach suf-

fers from a known problem as in all the encoder-decoder

based video/image captioning method. The problem is that

the training process uses the right previous word to gener-

ate the next word, while in the testing process the previous

word is not guaranteed. This problem is amplified in our

work, where our description context information is different

during training and testing. A potential cure is to improve

the language model in the training, where the model can be

devoid of ground truth in sentences generation.

5. Conclusion

Existing static fusion methods cannot adaptively support

the recognition of various kinds of visual entities, so the

relative increase obtained by fusing multiple-channel visu-

al features is limited. In this paper, we propose a task-

driven dynamic visual fusion method for video caption-

ing, which achieves state-of-the-art performance on pop-

ular benchmarks. Our method adaptively chooses differ-

ent fusion patterns according to task status. Three differ-

ent fusion patterns are designed to support the recognition

of three visual entities respectively, including appearance-

centric, motion-centric and correlation-centric entities. The

dynamic fusion model can attend to certain visual cues that

are most relevant to the current word, thus reducing ambi-

guity in video description. Our task-driven dynamic fusion

method can be added on any encoder-decoder based video

captioning architecture, so any further improvement on re-

lated architectures will promote the overall performance.
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