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Abstract

This paper1 presents a novel large-scale dataset and com-

prehensive baselines for end-to-end pedestrian detection and

person recognition in raw video frames. Our baselines ad-

dress three issues: the performance of various combinations

of detectors and recognizers, mechanisms for pedestrian

detection to help improve overall re-identification (re-ID)

accuracy and assessing the effectiveness of different detec-

tors for re-ID. We make three distinct contributions. First,

a new dataset, PRW, is introduced to evaluate Person Re-

identification in the Wild, using videos acquired through

six near-synchronized cameras. It contains 932 identities

and 11,816 frames in which pedestrians are annotated with

their bounding box positions and identities. Extensive bench-

marking results are presented on this dataset. Second, we

show that pedestrian detection aids re-ID through two simple

yet effective improvements: a cascaded fine-tuning strategy

that trains a detection model first and then the classifica-

tion model, and a Confidence Weighted Similarity (CWS)

metric that incorporates detection scores into similarity mea-

surement. Third, we derive insights in evaluating detector

performance for the particular scenario of accurate person

re-ID.

1. Introduction

Automated entry and retail systems at theme parks, pas-

senger flow monitoring at airports, behavior analysis for

automated driving and surveillance are a few applications

where detection and recognition of persons across a cam-

era network can provide critical insights. Yet, these two

problems have generally been studied in isolation within

computer vision. Person re-identification (re-ID) aims to

find occurrences of a query person ID in a video sequence,
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Figure 1: Pipeline of an end-to-end person re-ID system. It

consists of two modules: pedestrian detection and person

recognition (to differentiate from the overall re-ID). This pa-

per not only benchmarks both components, but also provides

novel insights in their interactions.

where state-of-the-art datasets and methods start from pre-

defined bounding boxes, either hand-drawn [22, 25, 37] or

automatically detected [21, 45]. On the other hand, sev-

eral pedestrian detectors achieve remarkable performance on

benchmark datasets [12, 30], but little analysis is available

on how they can be used for person re-ID.

In this paper, we propose a dataset and baselines for practi-

cal person re-ID in the wild, which moves beyond sequential

application of detection and recognition. In particular, we

study three aspects of the problem that have not been con-

sidered in prior works. First, we analyze the effect of the

combination of various detection and recognition methods

on person re-ID accuracy. Second, we study whether detec-

tion can help improve re-ID accuracy and outline methods

to do so. Third, we study choices for detectors that allow for

maximal gains in re-ID accuracy.

Current datasets lack annotations for such combined eval-

uation of person detection and re-ID. Pedestrian detection

datasets, such as Caltech [10] or Inria [6], typically do not

have ID annotations, especially from multiple cameras. On

the other hand, person re-ID datasets, such as VIPeR [16]

or CUHK03 [21], usually provide just cropped bounding

boxes without the complete video frames, especially at a

large scale. As a consequence, a large-scale dataset that eval-

uates both detection and overall re-ID is needed. To address

this, Section 3 presents a novel large-scale dataset called
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PRW that consists of 932 identities, with bounding boxes

across 11, 816 frames. The dataset comes with annotations

and extensive baselines to evaluate the impacts of detection

and recognition methods on person re-ID accuracy.

In Section 4, we leverage the volume of the PRW dataset

to train state-of-the-art detectors such as R-CNN [15], with

various convolutional neural network (CNN) architectures

such as AlexNet [19], VGGNet [31] and ResidualNet [17].

Several well-known descriptors and distance metrics are also

considered for person re-ID. However, our joint setup al-

lows two further improvements in Section 4.2. First, we

propose a cascaded fine-tuning strategy to make full use of

the detection data provided by PRW, which results in im-

proved CNN embeddings. Two CNN variants, are derived

w.r.t the fine tuning strategies. Novel insights can be learned

from the new fine-tuning method. Second, we propose a

Confidence Weighted Similarity (CWS) metric that incor-

porates detection scores. Assigning lower weights to false

positive detections prevents a drop in re-ID accuracy due to

the increase in gallery size with the use of detectors.

Given a dataset like PRW that allows simultaneous eval-

uation of detection and re-ID, it is natural to consider

whether any complementarity exists between the two tasks.

For a particular re-ID method, it is intuitive that a bet-

ter detector should yield better accuracy. But we argue

that the criteria for determining a detector as better are

application-dependent. Previous works in pedestrian de-

tection [10, 28, 43] usually use Average Precision or Log-

Average Miss Rate under IoU > 0.5 for evaluation. How-

ever, through extensive benchmarking on the proposed PRW

dataset, we find in Section 5 that IoU > 0.7 is a more effec-

tive rule in indicating detector influences on re-ID accuracy.

In other words, the localization ability of detectors plays a

critical role in re-ID.

Figure 1 presents the pipeline of the end-to-end re-ID

system discussed in this paper. Starting from raw video

frames, a gallery is created by pedestrian detectors. Given a

query person-of-interest, gallery bounding boxes are ranked

according to their similarity with the query. To summarize,

our main contributions are:

• A novel large-scale dataset, Person Re-identification in

the Wild (PRW), for simultaneous analysis of person

detection and re-ID.

• Comprehensive benchmarking of state-of-the-art detec-

tion and recognition methods on the PRW dataset.

• Novel insights into how detection aids re-ID, along with

an effective fine-tuning strategy and similarity measure

to illustrate how they might be utilized.

• Novel insights into the evaluation of pedestrian detec-

tors for the specific application of person re-ID.

Figure 2: Annotation interface. All appearing pedestrians

are annotated with a bounding box and ID. ID ranges from 1

to 932, and -2 stands for ambiguous persons.

2. Related Work

An overview of existing re-ID datasets. In recent years,

a number of person re-ID datasets have been exposed [16,

20, 21, 44, 45, 48, 48]. Varying numbers of IDs and boxes

exist with them (see Table 1). Despite some differences

among them, a common property is that the pedestrians are

confined within pre-defined bounding boxes that are either

hand-drawn (e.g., VIPeR [16], iLIDS [48], CUHK02 [20])

or obtained using detectors (e.g., CUHK03 [21], Market-

1501 [45] and MARS [44]). PRW is a follow-up to our

previous releases [44,45] and requires considering the entire

pipeline for person re-ID from scratch.

Pedestrian detection. Recent pedestrian detection works

feature the “proposal+CNN” approach. Pedestrian detec-

tion usually employs weak pedestrian detectors as propos-

als, which allows achieving relatively high recall using very

few proposals [24, 27–29]. Despite the impressive recent

progress in pedestrian detection, it has been rarely consid-

ered with person re-ID as an application. This paper attempts

to determine how detection can help re-ID and provide in-

sights in assessing detector performance.

Person re-ID. Recent progress in person re-ID mainly

consists in deep learning. Several works [1, 8, 21, 40, 44]

focus on learning features and metrics through the CNN

framework. Formulating person re-ID as a ranking task, im-

age pairs [1, 21, 40] or triplets [8] are fed into CNN. It is

also shown in [47] that deep learning using the identifica-

tion model [35, 44, 50] yields even higher accuracy than the

siamese model. With a sufficient amount of training data per

ID, we thus adopt the identification model to learn an CNN

embedding in the pedestrian subspace. We refer readers to

our recent works [47, 50] for details.

Detection and re-ID. In our knowledge, two previous

works focus on such end-to-end systems. In [42], persons in

photo albums are detected using poselets [4] and recognition

is performed using face and global signatures. However, the

setting in [42] is not typical for person re-ID where pedes-

trians are observed by surveillance cameras and faces are

not clear enough. In a work closer to ours, Xu et al. [39]

jointly model pedestrian commonness and uniqueness, and

calculate the similarity between query and each sliding win-

dow in a brute-force manner. While [39] works on datasets
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Datasets PRW CAMPUS [38] EPFL [3] Market-1501 [45] RAiD [7] VIPeR [16] i-LIDS [48] CUHK03 [21]

#frame 11,816 214 80 - - - - -

#ID 932 74 30 1,501 43 632 119 1,360

#annotated box 34,304 1,519 294 25,259 6,920 1,264 476 13,164

#box per ID 36.8 20.5 9.8 19.9 160.9 2 2 9.7

#gallery box 100-500k 1,519 294 19,732 6,920 1,264 476 13,164

#camera 6 3 4 6 4 2 2 2

Table 1: Comparing PRW with existing image-based re-ID datasets [3, 7, 16, 21, 38, 45, 48].

persons	w/	ID persons	w/o	ID BackgroundDetected	boxes

Figure 3: Examples of detected bounding boxes from video

frames in the PRW dataset. In “persons w/ID”, each column

contains 4 detected boxes of the same identity from distinc-

tive views. Column “persons w/o ID” presents persons who

do not have an ID in the dataset. Column “background”

shows false positive detection results. The detector used in

this figure is DPM + RCNN (AlexNet).

consisting of no more than 214 video frames, it may have

efficiency issues with large datasets. Departing from both

works, this paper sets up a large-scale benchmark system to

jointly analyze detection and re-ID performance.

Finally, we would like to refer readers to [36], concurrent

to ours and published in the same conference, which also

releases a large dataset for end-to-end person re-ID.

3. The PRW Dataset

3.1. Annotation Description

The videos are collected in Tsinghua university and are of

total length 10 hours. This aims to mimic the application in

which a person-of-interest goes out of the field-of-view of the

current camera for a short duration and needs to be located

from nearly cameras. A total of 6 cameras were used, among

which 5 are 1080×1920 HD and 1 is 576×720 SD. The

video captured by each camera is annotated every 25 frames

(1 second in duration). We first manually draw a bounding

box for all pedestrians who appear in the frames and then

assign an ID if it exists in the Market-1501 dataset. Since all

pedestrians are boxed, when we are not sure about a person’s

ID (ambiguity), we assign −2 to it. These ambiguous boxes

are used in detector training and testing, but are excluded in

re-ID training and testing. Figure 2 and Figure 3 show the

annotation interface and sample detected boxes, respectively.
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Figure 4: Distribution of pedestrian height and aspect ratio

(width/height) in the PRW dataset.

A total of 11,816 frames are manually annotated to obtain

43,110 pedestrian bounding boxes, among which 34,304

pedestrians are annotated with an ID ranging from 1 to 932

and the rest are assigned an ID of −2. In Table 1, we compare

PRW with previous person re-ID datasets regarding numbers

of frames, IDs, annotated boxes, annotated boxes per ID,

gallery boxes and number of cameras. Specifically, since

we densely label all the subjects, the number of boxes for

each identity is almost twice that of Market-1501. Moreover,

when forming the gallery, the detectors produce 100k-500k

boxes depending on the threshold. The distinctive feature

enabled by the PRW dataset is the end-to-end evaluation

of person re-ID systems. This dataset provides the original

video frames along with hand-drawn ground truth bounding

boxes, which makes it feasible to evaluate both pedestrian

detection and person re-ID. But more importantly, PRW

enables assessing the influence of pedestrian detection on

person re-ID, which is a topic of great interest for practical

applications but rarely considered in previous literature.

3.2. Evaluation Protocols

The PRW dataset is divided into a training set with 5, 704
frames and 482 IDs and a test set with 6, 112 frames and 450
IDs. We choose this split since it enables the minimum ID

overlap between training and testing sets. Detailed statistics

of the splits are presented in Table 2.

Pedestrian Detection. A number of popular pedestrian

datasets exist, to name a few, INRIA [6], Caltech [10] and

KITTI [13]. The INRIA dataset contains 1,805 128×64

pedestrian images cropped from personal photos; the Caltech

dataset provides ∼350k bounding boxes from ∼132k frames;

the KITTI dataset has 80k labels for the pedestrian class.

With respect to the number of annotations, PRW (∼43k
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Datasets #frame #ID #ped. #ped. w/ ID #ped. w/o ID

Train 5,134 482 16,243 13,416 2,827

Val. 570 482 1,805 1,491 314

Test 6,112 450 25,062 19,127 5,935

Table 2: Training/validation/testing split of the PRW dataset.

boxes) is a medium-sized dataset for pedestrian detection.

The training and testing splits are as described above and in

Table 2. Following the protocols in KITTI as well as generic

object detection, we mainly use the precision-recall curve

and average precision to evaluate detection performance. We

also report the log-average miss rate (MR) proposed in [10].

The former calculate the average precision corresponding to

ten recalls uniformly sampled from [0, 1] [15], while MR is

the average miss rate at 9 False Positive Per Image (FPPI)

uniformly sampled from [10−2, 100] [10]. More statistics

about the annotated pedestrians can be viewed in Fig. 4.

Person Re-identification. A good re-ID system pos-

sesses two characteristics. First, all pedestrians are accu-

rately localized within each frame, that is, 100% recall and

precision. Second, given a probe pedestrian, all instances of

the same person captured by disjoint cameras are retrieved

among the top-ranked results.

Re-ID is a 1:N search process. On the one hand, queries

are produced by hand-drawn bounding boxes, as in prac-

tice, it takes acceptable time and effort for a user to draw

a bounding box on the person-of-interest. For each ID, we

randomly select one query under each camera. In total, we

have 2,057 query images for the 450 IDs in the test set, aver-

aging 4.57 (maximum 6) queries/ID. On the other hand, “N”

denotes the database or gallery. A major difference between

PRW and traditional re-ID datasets [7, 16, 21, 23, 45, 48] is

that the gallery in PRW varies with the settings of pedes-

trian detectors. Different detectors will produce galleries

with different properties; even for the same type of detector,

varying the detection threshold will yield galleries of differ-

ent sizes. A good detector will be more likely to recall the

person-of-interest while keeping the database small.

The IDs of the gallery boxes are determined by their

intersection-over-union (IoU) scores with the ground truth

boxes. In accordance to the practice in object detection, the

detected boxes with IoU scores larger than 0.5 are assigned

with an ID, while those with IoU less than 0.5 are determined

as distractors [45]. Now, assume that we are given a query

image I and a gallery G generated by a specific detector.

We calculate the similarity score between the query and all

gallery boxes to obtain a ranking result. Following [45],

two metrics are used to evaluate person re-ID accuracy –

mean Average Precision (mAP), which is the mean across

all queries’ Average Precision (AP) and the rank-1, 10, 20

accuracy denoting the possibility to locate at least one true

positive in the top-1, 10, 20 ranks.

Combining pedestrian detection, we plot mAP (or rank-1,

rank-20 accuracy) against the average number of detected

boxes per image to present the end-to-end re-ID performance.

Conceptually, with few detection boxes per image, the de-

tections are accurate but recall is low, so a small mAP is

expected. When more boxes are detected, the gallery is filled

with an increasing number of false positive detections, so

mAP will first increase due to higher recall and then drop

due to the influence of distractors.

4. Base Components and Our Improvements

4.1. Base Components in the End­to­End System

Pedestrian detection. Recent pedestrian detectors usu-

ally adopts the “proposal+CNN” approach [5, 32]. Instead

of using objectness proposals such as selective search [33],

hand-crafted pedestrian detectors are first applied to generate

proposals. Since these weak detectors are discriminatively

trained on pedestrians, it is possible to achieve good recall

with very few proposals (in the order of 10). While RCNN

is slow with 2000 proposals, extracting CNN features from

a small number of proposals is fast, so we use RCNN in-

stead of the fast variant [14]. Specifically, the feature for

detection can be learnt through the RCNN framework by

classifying each box into 2 classes, namely pedestrian and

background. In this paper, three CNN architectures are

tested: AlexNet [19], VGGNet [31] and ResNet [17].

Person re-identification. We first describe some tradi-

tional methods. For image descriptors, we test 6 state-of-the-

art methods, namly BoW [45], LOMO [22], gBiCov [25],

HistLBP [37], SDALF [11] and the IDE recognizer we pro-

pose in Section 4.2. For metric learning, the 4 tested methods

are KISSME [18], XQDA [22], DVR [34] and DNS [41].

For CNN-based methods, it is pointed out in [47] that the

identification model outperforms the siamese model given

sufficient training data per class. In this work, the training

samples per ID consist of both hand-drawn and detected

boxes, and the average number of training samples per ID

is over 50. So we can readily adopt the identification CNN

model. Note that the training data do not include background

detections due to their imbalance large number compared

with the boxes for each ID. We do not apply any data aug-

mentation. During training, a CNN embedding is learned to

discriminate different identities. During testing, features of

the detected bounding box are extracted from FC7 (AlexNet)

after RELU, following which Euclidean distance or learned

metrics are used for similarity calculation. We name the

descriptor as ID-discriminative Embedding (IDE). The im-

plementation details of IDE can be viewed in [47, 50]2.

4.2. Proposed Improvements

Cascaded fine-tuning strategy. In [47], the IDE descrip-

2github.com/zhunzhong07/IDE-baseline-Market-1501
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tor is fine-tuned using the Market-1501 dataset [45] on the

ImageNet pre-trained model. In this paper, we name this

descriptor as IDEimgnet and treat it as a competing method.

For the proposed cascaded fine-tuning strategy, we insert an-

other fine-tuning step in the generation process of IDEimgnet.

That is, build on the ImageNet pre-trained model, we first

train a 2-class recognition model using the detection data,

i.e., to tell whether an image contains a pedestrian or not.

Then, we train a 482-class recognition model using the train-

ing data of PRW. The two fine-tuning process which is called

“cascaded fine-tuning”, results in a new CNN embedding,

denoted as IDEdet. The two types of CNN embeddings are

summarized below:

• IDEimgnet. The IDE model is directly fine-tuned on

the ImageNet pre-trained CNN model. In what follows,

when not specified, we use the term IDE to stand for

IDEimgnet for simplicity.

• IDEdet. With the ImageNet pre-trained CNN model,

we first train an R-CNN model on PRW which is a

two-class recognition task comprising of pedestrians

and the background. Then, we fine-tune the R-CNN

model with the IDE method, resulting in IDEdet.

Through the cascaded fine-tuning strategy, the learned

descriptor has “seen” more background training samples

as well as more pedestrians (labeled as “-2”) that are pro-

vided by the detection label of PRW. Therefore, the learned

descriptor IDEdet has improved discriminative ability to re-

duce the impact of false detections on the background. In

the experiment, the performance of the two variants will be

compared and insights will be drawn.

Confidence Weighted Similarity. Previous works treat

all gallery boxes as equal in estimating their similarity with

the query. This results in a problem: when populated with

false detections on the background (inevitable when gallery

gets larger with the use of detectors), re-ID accuracy will

drop with the gallery size [45]. This work proposes to ad-

dress this problem by incorporating detection confidence

into the similarity measurement. Intuitively, false positive

detections will receive lower weights and will have reduced

impact on re-ID accuracy. Specifically, detector confidences

of all gallery boxes are linearly normalized to [0, 1] in a

global manner. Then, the cosine distance between two de-

scriptors are calculated, before multiplying the normalized

confidence. Note that the IDE feature is extracted from

FC7 after RELU in AlexNet, so there are no negative

entries in the IDE vector. The cosine distance remains

non-negative with IDE vectors, and is compatible with the

detection scores. Currently, this baseline method supports

cosine (Euclidean) distance between descriptors, but in fu-

ture works, more sophisticated weightings corresponding

to metric learning methods may also be considered, which

should be a novel research direction in person re-ID.
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Figure 5: Detection recall at two IoU criteria. “Inria” and

“PRW” denote models trained on INRIA [6] and the proposed

PRW datasets, respectively. “Alex” and “Res” denote RCNN

models fine-tuned with AlexNet [19] and ResidualNet [17],

respectively. For IoU>0.7, we use warm colors for detectors

with higher AP, and cold colors for bad detectors. Best

viewed in color.
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Figure 6: Precision-recall curves at two IoU criteria. De-

tector legends are the same as Fig. 5 (Best viewed in color).

The Average Precision number is shown before the name of

each method.

5. Experiments

5.1. Evaluation of Pedestrian Detection

First, we evaluate the detection recall of several impor-

tant detection models on PRW. This serves as an important

reference to the effectiveness of proposals for RCNN based

methods. These models include Deformable Part Model

(DPM) [12], Aggregated Channel Features (ACF) [9] and

Locally Decorrelated Channel Features (LDCF) [26]. We

also test their respective RCNN versions. We retrain these

models on the PRW training set and plot detection recall

against average number of detection boxes per image on the

testing set. The results are shown in Fig. 5. It is observed

that recall is relatively low for the off-the-shelf detectors.

After being retrained on PED1K dataset, LDCF yields recall

of 89.3% on 11.2 proposals per image; ACF produces recall

of 88.81% with 34.5 proposals per image; DPM will have

a recall of 86.81% with 32.3 proposals on average. These

results are collected under IoU > 0.5. When IoU increases
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to 0.7, detector recalls deteriorate significantly. In all, recall

for the best detectors reaches around 90% for IoU > 0.5,

and around 60% for IoU > 0.7.

The detection methods without RCNN mentioned above

are used as proposals, and are subsequently coupled with

RCNN based models. Specifically, we fine tune RCNN

with three CNN models – AlexNet (Alex) [19], VGGNet

(VGG) [31], and ResidualNet (Res) [17]. Additionally, we re-

port results of the Histogram of Oriented Gradient (HOG) [6].

True positives are defined by IoU > 0.5 or IoU > 0.7. We

report both the Average Precision (AP) and Log Average

Miss Rate (MR). Experimental results are presented in Fig. 6.

As IoU increases, detector performance deteriorates signif-

icantly which is observed in [10]. Under IoU > 0.7, the

best detector is DPM+AlexNet, having an AP of 59.1%,

which is +9.7% higher than the second best detector. The

reason that DPM has robust performance under larger IoU is

that it consists of multiple components (parts) which adapts

well to pedestrian deformation, while channel feature based

methods typically set aspect ratio types that are less robust

to target variations. In both detection recall and detection

accuracy experiments, we find that detector rankings are

different from IoU > 0.5 to IoU > 0.7. With respect to

detection time, it takes 2.7s, 1.4s, and 6.5s on average on a

1080×1920 frame for ACF, LDCF and DPM, respectively,

using MATLAB 2015B on a machine with 16GB memory,

K40 GPU and Intel i7-4770 Processor. RCNN requires 0.2s

for 20 proposals.

From these benchmarking results, it is shown that the

usage of RCNN effectively increases detection performance

given a proposal type. For example, when using ACF as pro-

posal, the inclusion of AlexNet increases AP from 74.16% to

76.23% (+2.07%). Further, when different CNN models are

used for a given proposal, we find that ResidualNet outper-

forms the others in general: AP of ResNet is +0.41% higher

than AlexNet.

Similar to the performance of proposals, under IoU >
0.7, detector performance deteriorates significantly which

is observed in [10]. For example, LDCF yields the highest

recall under IoU > 0.5, while it only ranks 4th under IoU >
0.7. When measured under IoU > 0.7, the DPM detectors

are superior, probably because DPM deals with object de-

formation by detecting parts and adapts well to PRW where

pedestrians have diverse aspect ratios (see Fig. 4(b)).

5.2. Evaluation of Person Re­identification

We benchmark the performance of some recent descrip-

tors and distance metrics on the PRW dataset. Various types

of detectors are used – DPM, ACF, LDCF and their related

RCNN methods. The descriptors we have tested include

the Bag-of-Words vector [45], the IDE descriptor described

in Section 4.2, SDALF [11], LOMO [22], HistLBP [37],

and gBiCov [25]. The used metric learning methods include

Detector Recognizer
#detection=3 #detection=5 #detection=10

mAP r1 r20 mAP r1 r20 mAP r1 r20

DPM BOW 8.9 30.4 58.3 9.7 31.1 58.6 9.6 30.5 57.7

DPM IDE 12.7 37.2 72.2 13.7 36.9 72.1 13.7 36.6 70.8

DPM IDEdet 17.2 45.9 77.9 18.8 45.9 77.4 19.2 45.7 76.0

DPM-Alex SDALF+Kiss. 12.0 32.6 63.8 13.0 32.5 63.4 12.4 31.8

DPM-Alex LOMO+XQ. 13.4 34.9 66.5 13.0 34.1 64.0 12.4 33.6 62.5

DPM-Alex HistLBP+DNS 14.1 36.8 70.0 13.6 35.9 67.8 12.7 35.0 65.7

DPM-Alex IDE 15.1 38.8 74.1 14.8 37.6 71.4 14.1 36.9 69.8

DPM-Alex IDEdet 20.2 48.2 78.1 20.3 47.4 77.1 19.9 47.2 76.4

DPM-Alex IDEdet+CWS 20.0 48.2 78.8 20.5 48.3 78.8 20.5 48.3 78.8

ACF LOMO+XQ. 10.5 31.5 61.6 10.5 30.9 59.5 9.7 29.7 57.4

ACF gBiCov+Kiss. 9.8 31.1 60.1 9.9 30.3 58.3 9.0 29.0 55.9

ACF IDEdet 16.6 44.8 75.9 17.5 43.8 76.0 17.0 42.9 74.5

ACF-Res IDE 12.4 35.0 70.4 12.5 33.8 68.6 11.5 33.0 66.7

ACF-Alex LOMO+XQ. 10.5 31.8 60.7 10.3 30.6 59.4 9.5 29.6 57.1

ACF-Alex IDEdet 17.0 45.2 76.6 17.5 43.6 75.1 16.6 42.7 73.7

ACF-Alex IDEdet+CWS 17.0 45.2 76.8 17.8 45.2 76.8 17.8 45.2 76.8

LDCF BoW 8.2 30.1 56.9 9.1 29.8 57.0 8.3 28.3 55.3

LDCF LOMO+XQ. 11.2 31.6 62.9 11.0 31.1 62.2 10.1 29.6 58.6

LDCF gBiCov+Kiss. 9.5 30.7 58.8 9.6 30.1 58.4 8.8 28.7 56.7

LDCF IDE 12.7 35.3 70.1 34.4 13.1 69.4 12.2 33.1 68.0

LDCF IDEdet 17.5 45.3 76.2 18.3 44.6 75.6 17.7 43.8 74.3

LDCF IDEdet+CWS 17.5 45.5 76.3 18.3 45.5 76.4 18.3 45.5 76.4

Table 3: Benchmarking results of various combinations of

detectors and recognizers on the PRW dataset.

Kissme [18], XQDA [22], and the newly proposed DNS [41].

The results are shown in Fig. 7 and Table 3.

The unsupervised descriptor BoW yields decent perfor-

mance on PRW dataset: around 10% in mAP and 30% in

rank-1 accuracy. Improvements can be found when metric

learning methods are employed. for example, when coupling

SDALF and Kissme, mAP increases to 12.0% and 32.6%

in mAP and rank-1 accuracy, respectively. We observe that

for hand-crafted features, “HistLBP+DNS” outperforms oth-

ers when built on the DPM-AlexNet detector. These results

generally agree with observations in prior works [41]. We

conjecture that given a fixed detector, re-ID accuracy will dis-

play similar trends as prior studies [21, 37, 41]. The IDE de-

scriptor yields significantly higher accuracy compared with

the others. For example, IDEdet exceeds “HistLBP+DNS”

by +6.2% in mAP when on average 3 bounding boxes are

detected per image. This validates the effectiveness of the

CNN-based descriptor. When different detectors are em-

ployed, detectors with higher AP under IoU >0.7 are gener-

ally beneficial towards higher overall re-ID accuracy.

The number of detected bounding boxes per image also

has an impact on re-ID performance. When too few (e.g.,

2) bounding boxes are detected, it is highly possible that

our person-of-interest is not detected, so the overall re-ID

accuracy can be compromised. But when too many bounding

boxes are detected, distractors may exert negative influence

on the re-ID accuracy, so accuracy will slowly drop as the

number of bounding boxes per image increases (Fig. 7).

Nevertheless, one thing we should keep in mind is that with

more bounding boxes, the timings for person retrieval also

increase. Currently most works do not consider retrieval

efficiency due to the small volume of the gallery. PRW, on
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Figure 7: Re-id accuracy (mAP, rank-1 accuracy, and rank-

20 accuracy) with 9 detectors and 3 recognizers. Detector

legends are the same as Fig. 5 and Fig. 6. Given a recognizer,

we find that the performance of overall re-ID accuracy is

more consistent with detection accuracy under IoU>0.7 than

IoU>0.5, which suggests that IoU>0.7 is a better criterion

for detector evaluation under the application of re-ID.

the other hand, may produce over 100k bounding boxes, so

efficiency may become an important issue in future research.

5.3. Impact of detectors on re­identification

Criteria for detector assessment. How does the detec-

tor performance affect re-ID? This is a critical question in an

end-to-end re-id system. Broadly speaking, a better detector

would result in a higher re-id accuracy. So how to assess

detector quality in the scenario of person re-ID? When only

considering pedestrian detection, the community uses AP

or MR defined under IOU > 0.5. In this paper, we argue

that, apart from providing high recall and precision, it is

of crucial importance that a detector give good localization

results. Specifically, we find that IoU > 0.7 is a more effec-

tive criteria than IoU > 0.5 for detection evaluation in the

scenario of person re-ID, which is the third contribution of

this work.

To find how re-ID accuracy varies with detector perfor-

mance, we systematically test 9 detectors (as described

in Fig. 5 and Fig. 6) and 3 recognizers. The 3 recogniz-

ers are: 1) 5, 600-dimensional Bag-of-Words (BoW) de-

scriptor [45], the state-of-the-art unsupervised descriptor,

2) 4, 096-dimensional CNN embedding feature described in

Section 4.2 using AlexNet, and 3) LOMO+XQDA [22], a
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Figure 8: Plots of mAP and rank-1 accuracy using two

variants of the IDE with 5 detectors. Fine-tuning on the

pedestrian-background detection model improves over fine-

tuning on the Imagenet model, proving the effectiveness of

the proposed cascaded fine-tuning method.

state-of-the-art supervised recognizer. From the results in

Fig. 7 and Table 3, a key finding is that given a recognizer,

the re-ID performance is consistent with detector perfor-

mance evaluated using the IoU > 0.7 criterion. In fact, if

we use the IoU > 0.5 criterion as most commonly employed

in pedestrian detection, our study shows that the detector

rankings do not have accurate predictions on re-ID accuracy.

Specifically, while the “DPM Alex” detector ranks 4th in

average precision (75.5%) with the IoU > 0.5 rule, it en-

ables superior re-ID performance which is suggested in its

top ranking under IoU > 0.7. The same observations hold

for the other 8 detectors. This conclusion can be attributed

to the explanation that under normal circumstances, a bet-

ter localization result will enable more accurate matching

between the query and gallery boxes. As an insight from

this observation, when a pool of detectors is available in

a practical person re-ID system, a good way for choosing

the optimal one is to rank the detectors according to their

performance under IoU > 0.7. In addition, recent research

on partial person re-ID [49] may be a possible solution to

the problem of misalignment.

Effectiveness of cascade fine-tuning. This paper intro-

duces two IDE variants. For the first variant, we fine-tune

IDE directly from AlexNet pre-trained on ImageNet, denoted

as IDEimgnet. For the second variant, we first fine-tune a

pedestrian detection model (2 classes, pedestrian and back-

ground) from AlexNet pre-trained on ImageNet, and then

we further fine tune it using the identification model on PRW.

We denote the second variant as IDEdet, which is the learned

embedding by the cascaded fine-tuning method. Experimen-

tal results related to the IDE variants are presented in Table

3 and Fig. 8.
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Figure 9: Effectiveness of the proposed Confidence

Weighted Similarity (CWS) on the PRW dataset. We test

three detectors and the IDEdet descriptor fine-tuned on the

pedestrian-background detection model. We find that CWS

reduces the impact of distractors when the number of de-

tected bounding boxes increases.

Two major conclusions can be drawn from the above ex-

periments. First, we observe that the accuracy of IDE is

superior to that of hand-crafted descriptors (in accordance

with [47]), and is further improved in combination with

state-of-the-art metric learning schemes. Second, it is no-

ticeable from Fig. 8 that IDEdet yields considerably higher

re-ID accuracy than IDEimgnet. Specifically, when using the

DPM detector trained on INRIA dataset and considering 3

detection boxes per image, IDEdet results in +4.52% and

+9.17% improvement in mAP and rank-1 accuracy, respec-

tively. Very similar improvements can be observed for the

other 4 detectors and using 5 detection boxes per image.

This indicates that when more background and pedestrian

samples are “seen”, the re-ID feature is more robust against

outliers. This illustrates that the proposed cascaded fine-

tuning method is effective in improving the discriminative

ability of the learned embeddings. In fact, a promising direc-

tion is to utilize more background and pedestrian samples

without ID that are cheaper to collect in order to pre-train the

IDE model. Experiment of the two IDE variants provides

one feasible solution of how detection aids re-ID.

Effectiveness of Confidence Weighted Similarity

(CWS) We test the CWS proposed in Section 4.2 on the

PRW dataset with three detectors and the IDEdet descriptor.

The results are shown in Fig. 9. The key observation is that

CWS is effective in preventing re-ID accuracy from dropping

as the number of detections per image increase. As discussed

before, more distractors are present when the database get

larger and CWS addresses the problem by suppressing the

scores of false positive results. In Table 3, the best results

on the PRW dataset are achieved when CWS is used, which

illustrates the effectiveness of the proposed similarity. We

will extend CWS to include metric learning representations

in the future work.

Figure 10 presents some sample re-ID results. For the

failure case in row 3, the reason is that too many pedestrians

are wearing similar clothes. For row 4, the query is cropped

Figure 10: Sample re-ID results on the proposed PRW

dataset with the DPM Alex detector and the proposed IDE

descriptor. Rows 1 and 2 are success cases, while Rows

3 and 4 are failure cases due to similar clothing and trun-

cation, respectively. With truncated queries, partial re-ID

methods [49] might be especially important.

by the camera, leading to compromised pedestrian matching.

6. Conclusions and Future Work

We have presented a novel large-scale dataset, baselines

and metrics for end-to-end person re-ID in the wild. The

proposed PRW dataset has a number of features that are

not present in previous re-ID datasets, allowing the first sys-

tematic study of how the interplay of pedestrian detection

and person re-ID affects the overall performance. Besides

benchmarking several state-of-the-art methods in the fields

of pedestrian detection and person re-ID, this paper also

proposes two effective methods to improve the re-ID accu-

racy, namely, ID-discriminative Embedding and Confidence

Weighted Similarity. For IDE, we find that fine-tuning an

R-CNN model can be a better initialization point for IDE

training. Further, our extensive experiments serve as a guide

to selecting the best detectors and detection criteria for the

specific application of person re-ID.

Our work also enables multiple directions for future re-

search. First, it is critical to design effective bounding box

regression schemes to improve person matching accuracy.

Second, given the baseline method proposed in this paper

to incorporate detection confidence into similarity scores,

more sophisticated re-weighting schemes can be devised.

This direction could not have been enabled without a dataset

that jointly considers detection and re-ID. In fact, re-ranking

methods [2, 46, 51] will be critical for scalable re-ID. Third,

while it is expensive to label IDs, annotation of pedestrian

boxes without IDs is easier and large amounts of pedestrian

data already exist. According to the IDE results reported in

this paper, it will be of great value to utilize such weakly-

labeled data to improve re-ID performance. Finally, effective

partial re-ID algorithms [49] can be important for end-to-end

systems on the PRW dataset (Fig. 10).
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