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Abstract

When considering person re-identification (re-ID) as a

retrieval process, re-ranking is a critical step to improve

its accuracy. Yet in the re-ID community, limited effort

has been devoted to re-ranking, especially those fully au-

tomatic, unsupervised solutions. In this paper, we propose

a �-reciprocal encoding method to re-rank the re-ID result-

s. Our hypothesis is that if a gallery image is similar to

the probe in the �-reciprocal nearest neighbors, it is more

likely to be a true match. Specifically, given an image, a �-

reciprocal feature is calculated by encoding its �-reciprocal

nearest neighbors into a single vector, which is used for re-

ranking under the Jaccard distance. The final distance is

computed as the combination of the original distance and

the Jaccard distance. Our re-ranking method does not re-

quire any human interaction or any labeled data, so it is ap-

plicable to large-scale datasets. Experiments on the large-

scale Market-1501, CUHK03, MARS, and PRW datasets

confirm the effectiveness of our method1.

1. Introduction

Person re-identification (re-ID) [52, 4, 24, 32, 28, 30]

is a challenging task in computer vision. In general, re-ID

can be regarded as a retrieval problem. Given a probe per-

son, we want to search in the gallery for images containing

the same person in a cross-camera mode. After an initial

ranking list is obtained, a good practice consists of adding

a re-ranking step, with the expectation that the relevant im-

ages will receive higher ranks. In this paper, we thus focus

on the re-ranking issue.

Re-ranking has been mostly studied in generic instance

retrieval [6, 15, 35, 36]. The main advantage of many re-

ranking methods is that it can be implemented without re-

quiring additional training samples, and that it can be ap-

∗Corresponding author
1The source code is available upon request.
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Figure 1. Illustration of the nearest neighborhoods of a person

re-identification application. Top: The query and its 10-nearest

neighbors, where P1-P4 are positives, N1-N6 are negatives. Bot-

tom: Each two columns shows 10-nearest neighbors of the corre-

sponding person. Blue and green box correspond to the probe and

positives, respectively. We can observe that the probe person and

positive persons are 10-nearest neighbors reciprocally.

plied to any initial ranking result.

The effectiveness of re-ranking depends heavily on the

quality of the initial ranking list. A number of previ-

ous works exploit the similarity relationships between top-

ranked images (such as the �-nearest neighbors) in the ini-

tial ranking list [6, 15, 35, 36, 45, 46]. An underlying as-

sumption is that if a returned image ranks within the �-

nearest neighbors of the probe, it is likely to be a true match

which can be used for the subsequent re-ranking. Neverthe-

less, situation may deviate from optimal cases: false match-

es may well be included in the �-nearest neighbors of the

probe. For example, in Fig. 1, P1, P2, P3 and P4 are four

true matches to the probe, but all of them are not included

in the top-4 ranks. We observe some false matches (N1-

N6) receive high ranks. As a result, directly using the top-�

ranked images may introduce noise in the re-ranking sys-

tems and compromise the final result.

In literature, the �-reciprocal nearest neighbor [15, 35] is

an effective solution to the above-mentioned problem, i.e.,
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the pollution of false matches to the top-� images. When

two images are called �-reciprocal nearest neighbors, they

are both ranked top-� when the other image is taken as the

probe. Therefore, the �-reciprocal nearest neighbor serves

as a stricter rule whether two images are true matches or

not. In Fig. 1, we observe that the probe is a reciprocal

neighbor to the true matched images, but not to the false

matches. This observation identifies the true matches in the

initial ranking list to improve the re-ranking results.

Given the above considerations, this paper introduces a

�-reciprocal encoding method for re-ID re-ranking. Our ap-

proach consists of three steps. First, we encode the weight-

ed �-reciprocal neighbor set into a vector to form the �-

reciprocal feature. Then, the Jaccard distance between two

images can be computed by their �-reciprocal features. Sec-

ond, to obtain a more robust �-reciprocal feature, we devel-

op a local query expansion approach to further improve the

re-ID performance. Finally, the final distance is calculat-

ed as the weighted aggregation of the original distance and

the Jaccard distance. It is subsequently used to acquire the

re-ranking list. The framework of the proposed approach is

illustrated in Fig. 2. To summarize, the contributions of this

paper are:

∙ We propose a �-reciprocal feature by encoding the �-

reciprocal feature into a singe vector. The re-ranking

process can be easily performed by vector comparison.

∙ Our approach does not require any human interaction

or annotated data, and can be applied to any person

re-ID ranking result in an automatic and unsupervised

way.

∙ The proposed method effectively improves the per-

son re-ID performance on several datasets, including

Market-1501, CUHK03, MARS, and PRW. In particu-

lar, we achieve the state-of-the-art accuracy on Market-

1501 in both rank-1 and mAP.

2. Related Work

We refer the interested readers to [4, 52] for a detailed

review of person re-identification (re-ID). Here we focus on

research that aims at re-ranking methods for object retrieval

and particularly for re-ID.

Re-ranking for object retrieval. Re-ranking methods

have been successfully studied to improve object retrieval

accuracy [53]. A number of works utilize the �-nearest

neighbors to explore similarity relationships to address the

re-ranking problem. Chum et al. [6] propose the average

query expansion (AQE) method, where a new query vector

is obtained by averaging the vectors in the top-� returned

results, and is used to re-query the database. To take ad-

vantage of the negative sample which is far away from the

appearance feature 
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Figure 2. Proposed re-ranking framework for person re-

identification. Given a probe � and a gallery, the appearance fea-

ture and �-reciprocal feature are extracted for each person. Then

the original distance � and Jaccard distance �� are calculated for

each pair of the probe person and gallery person. The final dis-

tance �∗ is computed as the combination of � and �� , which is

used to obtain the proposed ranking list.

query image, Arandjelović and Zisserman [1] develop the

discriminative query expansion (DQE) to use a linear SVM

to obtain a weight vector. The distance from the decision

boundary is employed to revise the initial ranking list. Shen

et al. [36] make use of the k-nearest neighbors of the ini-

tial ranking list as new queries to produce new ranking lists.

The new score of each image is calculated depending on its

positions in the produced ranking lists. More recently, s-

parse contextual activation (SCA) [2] propose to encode the

neighbor set into a vector, and to indicate samples similar-

ity by generalized Jaccard distance. To prevent the pollu-

tion of false matches to the top-� images, the concept of

�-reciprocal nearest neighbors is adopted in [15, 35]. In

[15], the contextual dissimilarity measure (CDM) is pro-

posed to refine the similarity by iteratively regularizing the

average distance of each point to its neighborhood. Qin et

al. [35] formally present the concept of �-reciprocal near-

est neighbors. The k-reciprocal nearest neighbors are con-

sidered as highly relevant candidates, and used to construct

closed set for re-ranking the rest of dataset. Our work de-

parts from both works in several aspects. We do not sym-

metrize nearest neighborhood relationship to refine the sim-

ilarity as [15], or directly consider the �-reciprocal nearest

neighbors as top ranked samples like [35]. Instead we cal-

culate a new distance between two images by comparing

their �-reciprocal nearest neighbors.

Re-ranking for re-ID. Most existing person re-

identification methods mainly focus on feature represen-

tation [43, 13, 24, 50, 22] or metric learning [24, 18, 10,

33, 47]. Recently, several researchers [11, 34, 29, 25, 51,

21, 12, 20, 44, 46] have paid attention to re-ranking based

method in the re-ID community. Different from [25, 40]

and [3], which require human interaction or label supervi-

sion, we focus on an automatic and unsupervised solution.

Li et al. [21] develop a re-ranking model by analyzing the
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relative information and direct information of near neigh-

bors of each pair of images. In [12], an unsupervised re-

ranking model is learnt by jointly considering the content

and context information in the ranking list, which effective-

ly remove ambiguous samples to improve the performance

of re-ID. Leng et al. [20] propose a bidirectional ranking

method to revise the initial ranking list with the new sim-

ilarity computed as the fusion of both content and contex-

tual similarity. Recently, the common nearest neighbors of

different baseline methods are exploited to re-ranking task

[44, 46]. Ye et al. [44] combine the common nearest neigh-

bors of global and local features as new queries, and revise

the initial ranking list by aggregating the new ranking lists

of global and local features. In [46], the �-nearest neighbor

set is utilized to calculate both similarity and dissimilarity

from different baseline method, then the aggregation of sim-

ilarity and dissimilarity is performed to optimize the initial

ranking list. Continues progress of these mentioned meth-

ods in re-ranking promises to make future contributions to

discovering further information from �-nearest neighbors.

However, using the �-nearest neighbors to implement re-

ranking directly may restrict the overall performance since

false matches are often included. To tackle this problem,

in this paper, we investigate the importance of �-reciprocal

neighbors in person re-ID and hence design a simple but

effective re-ranking method.

3. Proposed Approach

3.1. Problem Definition

Given a probe person � and the gallery set with � images

� = {�� ∣ � = 1, 2, ...�}, the original distance between two

persons � and �� can be measured by Mahalanobis distance,

�(�, ��) = (�� − ���)
⊤
M(�� − ���) (1)

where �� and ��� represents the appearance feature of probe

� and gallery ��, respectively, and M is a positive semidefi-

nite matrix.

The initial ranking list ℒ(�,�) = {�01 , �
0
2 , ...�

0
�} can

be obtained according to the pairwise original distance be-

tween probe � and gallery ��, where �(�, �0� ) < �(�, �0�+1).
Our goal is to re-rank ℒ(�,�), so that more positive samples

rank top in the list, and thus to improve the performance of

person re-identification (re-ID).

3.2. �-reciprocal Nearest Neighbors

Following [35], we define �(�, �) as the �-nearest

neighbors (i.e. the top-� samples of the ranking list) of a

probe �:

�(�, �) = {�01 , �
0
2 , ..., �

0
�}, ∣�(�, �)∣ = � (2)

Q

B CA D E

G
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B
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Figure 3. Example of the k-reciprocal neighbors expansion pro-

cess. The positive person G which is similar to C is added into

ℛ∗(�, 20).

where ∣⋅∣ denotes the number of candidates in the set. The

�-reciprocal nearest neighbors ℛ(�, �) can be defined as,

ℛ(�, �) = {�� ∣ (�� ∈ �(�, �)) ∧ (� ∈ �(��, �))} (3)

According to the previous description, the �-reciprocal n-

earest neighbors are more related to probe � than �-nearest

neighbors. However, due to variations in illuminations, pos-

es, views and occlusions, the positive images may be ex-

cluded from the �-nearest neighbors, and subsequently not

be included in the �-reciprocal nearest neighbors. To ad-

dress this problem, we incrementally add the 1
2�-reciprocal

nearest neighbors of each candidate in ℛ(�, �) into a more

robust set ℛ∗(�, �) according to the following condition

ℛ∗(�, �) ← ℛ(�, �) ∪ℛ(�, 1
2�)

s.t.
∣

∣ℛ(�, �) ∩ℛ(�, 1
2�)

∣

∣ ⩾
2
3

∣

∣ℛ(�, 1
2�)

∣

∣ ,

∀� ∈ ℛ(�, �)

(4)

By this operation, we can add into ℛ∗(�, �) more positive

samples which are more similar to the candidates in ℛ(�, �)
than to the probe �. This is stricter against including too

many negative samples compared to [35]. In Fig. 3, we

show an example of the expansion process. Initially, the

hard positive G is missed out in ℛ(�, 20). Interestingly,

G is included in ℛ(�, 10), which is beneficial information

for bringing positive G back. Then, we can apply Eq. 4 to

add G into ℛ∗(�, 20). Therefore, after expansion process,

more positive samples could be added into ℛ∗(�, �). D-

ifferent from [35], we do not directly take the candidates

in ℛ∗(�, �) as top ranked images. Instead, we consider

ℛ∗(�, �) as contextual knowledge to re-calculate the dis-

tance between the probe and gallery.

3.3. Jaccard Distance

In this subsection, we re-calculate the pairwise distance

between the probe � and the gallery �� by comparing their
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�-reciprocal nearest neighbor set. As described earlier [2]

[46], we believe that if two images are similar, their k-

reciprocal nearest neighbor sets overlap, i.e., there are some

duplicate samples in the sets. And the more duplicate sam-

ples, the more similar the two images are. The new distance

between � and �� can be calculated by the Jaccard metric of

their �-reciprocal sets as:

�� (�, ��) = 1−
∣ℛ∗(�, �) ∩ℛ∗(��, �)∣

∣ℛ∗(�, �) ∪ℛ∗(��, �)∣
(5)

where ∣⋅∣ denotes the number of candidates in the set. We

adopt Jaccard distance to name this new distance. Although

the above method could capture the similarity relationships

between two images, there still remains three obvious short-

comings:

∙ It is very time-consuming to get the intersection and

union of two neighbor sets ℛ∗(�, �) and ℛ∗(��, �) in

many cases, and it becomes more challenging while

the Jaccard distance is needed to be calculated for all

image pairs. An alternative way is to encode the neigh-

bor set into an easier but equivalent vector, reducing

the computational complexity greatly, while maintain-

ing original structure in neighbor set.

∙ The distance calculation method weighs all neighbors

equally, leading to a simple but not discriminative

neighbor set. In fact, neighbors that are closer to probe

� are more likely to be true positives. Therefore, it

is convincing and reasonable to re-calculate weights

based on the original distance, and assign large weights

to nearer samples.

∙ Simply taking the contextual information into accoun-

t will pose considerable barriers when attempting to

measure similarity between two persons, since un-

avoidable variation makes it difficult to discriminate

sufficient contextual information. Hence, incorporat-

ing original distance and Jaccard distance becomes im-

portant for a robust distance.

Inspired by [2], the �-reciprocal feature is proposed

to address the first two shortcomings, by encoding the

�-reciprocal nearest neighbor set into a vector �� =
[��,�1 ,��,�2 , ...,��,�� ], where ��,�� is initially defined by

a binary indicator function as

��,�� =

{

1 if �� ∈ ℛ∗(�, �)

0 otherwise.
(6)

In this way, the �-reciprocal neighbor set can be represent-

ed as an � -dimensional vector, with each item of the vector

indicating whether the corresponding image is included in

ℛ∗(�, �). However, this function still consider each neigh-

bor as equal. Intuitively, the neighbor who is closer to the

probe � should be more similar with the probe �. Thus, we

reassign weights according to the original distance between

the probe and its neighbor, we redefine Eq. 6 by the Gaus-

sian kernel of the pairwise distance as

��,�� =

{

e−�(�,��) if �� ∈ ℛ∗(�, �)

0 otherwise.
(7)

In this way, the hard weighting (0 or 1) is converted into soft

weighting, with closer neighbors assigned larger weight-

s while farther neighbors smaller weights. Based on the

above definition, the number of candidates in the intersec-

tion and union set can be calculated as

∣ℛ∗(�, �) ∩ℛ∗(��, �)∣ = ∥min(��,���)∥1 (8)

∣ℛ∗(�, �) ∪ℛ∗(��, �)∣ = ∥max(��,���)∥1 (9)

where min and max operate the element-based minimiza-

tion and maximization for two input vectors. ∥⋅∥1 is �1

norm. Thus we can rewrite the Jaccard distance in Eq. 5 as

��(�, ��) = 1−

∑�

�=1 min(��,�� ,���,�� )
∑�

�=1 max(��,�� ,���,�� )
(10)

By formula transformation from Eq. 5 to Eq. 10, we have

succeed in converting the set comparison problem into pure

vector calculation, which is much easier practically.

3.4. Local Query Expansion

Emulating the idea that the images from the same class

may share similar features, we use the �-nearest neighbors

of the probe � to implement the local query expansion. The

local query expansion is defined as

�� =
1

∣�(�, �)∣

∑

��∈�(�,�)

��� (11)

As a result, the �-reciprocal feature �� is expanded by the

�-nearest neighbors of probe �. Note that, we implement

this query expansion both on the probe � and galleries ��.

Since there will be noise in the �-nearest neighbors, we limit

the size of �(�, �) used in the local query expansion to a

smaller value. In order to distinguish between the size of

ℛ∗(��, �) and �(�, �) used in Eq. 7 and Eq. 11, we denote

the former as �1 and the latter as �2, respectively, where

�1 > �2 .

3.5. Final Distance

In this subsection, we focus on the third shortcoming of

Eq. 5. While most existing re-ranking methods ignore the

importance of original distance in re-ranking, we jointly ag-

gregate the original distance and Jaccard distance to revise

the initial ranking list, the final distance �∗ is defined as

�∗(�, ��) = (1− �)�� (�, ��) + ��(�, ��) (12)
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where � ∈ [0, 1] denotes the penalty factor, it penalizes gal-

leries far away from the probe �. When � = 0, only the

k-reciprocal distance is considered. On the contrary, when

� = 1, only the original distance is considered. The effect

of � is discussed in section 4. Finally, the revised ranking

list ℒ∗(�,�) can be obtained by ascending sort of the final

distance.

3.6. Complexity Analysis

In the proposed method, most of the computation costs

focus on pairwise distance computing for all gallery pairs.

Suppose the size of the gallery set is � , the computation

complexity required for the distance measure and the rank-

ing process is �(�2) and �(�2����), respectively. How-

ever, in practical applications, we can calculate the pairwise

distance and obtain the ranking lists for the gallery in ad-

vance offline. As a result, given a new probe �, we only need

to compute the pairwise distance between � and gallery with

computation complexity �(�) and to rank all final distance

with computation complexity �(�����).

4. Experiments

4.1. Datasets and Settings

Datasets Because our re-ranking approach is based on

the comparison of similar neighbors between two person-

s, we conducted experiments on four large-scale person re-

identification (re-ID) benchmark datasets that contain mul-

tiple positive samples for each probe in the gallery : includ-

ing two image-based datasets, Market-1501 [50], CUHK03

[23] , a video-based dataset MARS [49], and an end-to-end

dataset PRW [54] (see Table 1 for an overview).

Market-1501 [50] is currently the largest image-based

re-ID benchmark dataset. It contains 32,668 labeled bound-

ing boxes of 1,501 identities captured from 6 different view

points. The bounding boxes are detected using Deformable

Part Model (DPM) [9]. The dataset is split into two parts:

12,936 images with 751 identities for training and 19,732

images with 750 identities for testing. In testing, 3,368

hand-drawn images with 750 identities are used as probe

set to identify the correct identities on the testing set. We

report the single-query evaluation results for this dataset.

CUHK03 [23] contains 14,096 images of 1,467 iden-

tities. Each identity is captured from two cameras in the

CUHK campus, and has an average of 4.8 images in each

camera. The dataset provides both manually labeled bound-

ing boxes and DPM-detected bounding boxes. In this paper,

both experimental results on ‘labeled’ and ‘detected’ data

are presented.

MARS [49] is the largest video-based re-ID bench-

mark dataset to date, containing 1,261 identities and around

20,000 video sequences. These sequences are collected

from 6 different cameras and each identity has 13.2 se-

Table 1. The details of datasets used in our experiments.

Datasets # ID # box # box/ID # cam

Market-1501 [50] 1,501 32,643 19.9 6

CUHK03 [23] 1,467 14,096 9.7 2

MARS [49] 1,261 1,067,516 13.2 6

PRW [54] 932 34,304 36.8 6

quences on average. Each sequence is automatically ob-

tained by the DPM as pedestrian detector and the GMMCP

[7] as tracker. In addition, the dataset also contains 3,248

distractor sequences. The dataset is fixedly split into train-

ing and test sets, with 631 and 630 identities, respectively.

In testing, 2,009 probes are selected for query.

PRW [54] is an end-to-end large-scale dataset. It is

composed of 11,816 frames of 932 identities captured from

six different cameras. A total of 43,110 annotated person

bounding boxes are generated from these frames. Given a

query bounding box, the dataset aims to first perform pedes-

trian detection on the raw frames to generate the gallery, and

identify the correct bounding boxes from the gallery. The

dataset is divided into a training set with 5,704 frames of

482 identities and a test set with 6,112 frames of 450 iden-

tities. In testing, 2,057 query images for 450 identities are

selected for evaluation. A detected bounding box is consid-

ered correct if its IoU value with the ground truth is above

0.5.

Evaluation metrics We use two evaluation metrics to

evaluate the performance of re-ID methods on all dataset-

s. The first one is the Cumulated Matching Characteristics

(CMC). Considering re-ID as a ranking problem, we report

the cumulated matching accuracy at rank-1. The other one

is the mean average precision (mAP) considering re-ID as

an object retrieval problem, as described in [50].

Feature representations The Local Maximal Occur-

rence (LOMO) features are used to represent the person

appearance [24]. It is robust to view changes and illumi-

nation variations. In addition, the ID-discriminative Em-

bedding (IDE) feature proposed in [54] is used. The IDE

extractor is effectively trained on classification model in-

cluding CaffeNet [19] and ResNet-50 [14]. It generates a

1,024-dim (or 2,048-dim) vector for each image, which is

effective in large-scale re-ID datasets. For the convenience

of description, we abbreviate the IDE trained on CaffeNet

and ResNet-50 to IDE (C) and IDE (R) respectively. We use

these two methods as the baseline of our re-ID framework.

4.2. Experiments on Market-1501

We first evaluate our method on the largest image-based

re-ID dataset. In this dataset, in addition to using LOMO

and IDE features, we also use the BOW [50] feature. We

trained the IDE feature on CaffeNet [19] and ResNet-50

[14]. We set �1 to 20, �2 to 6, and � to 0.3. Results among

various methods with our method are shown in Table 2. Our

method consistently improves the rank-1 accuracy and mAP
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Table 2. Comparison among various methods with our re-ranking

approach on the Market-1501 dataset.

Method Rank 1 mAP

BOW [50] 35.84 14.75

BOW + Ours 39.85 19.90

BOW + KISSME 42.90 19.41

BOW + KISSME + Ours 44.77 25.64

BOW + XQDA 41.39 19.72

BOW + XQDA + Ours 42.61 24.98

LOMO + KISSME 41.12 19.02

LOMO + KISSME + Ours 45.22 28.44

LOMO + XQDA [24] 43.56 22.44

LOMO + XQDA + Ours 48.34 32.21

IDE (C) [54] 55.87 31.34

IDE (C) + AQE [6] 57.69 35.25

IDE (C) + CDM [15] 58.02 34.54

IDE (C) + Ours 58.79 42.06

IDE (C) + XQDA 57.72 35.95

IDE (C) + XQDA + Ours 61.25 46.79

IDE (C) + KISSME 58.61 35.40

IDE (C) + KISSME + Ours 61.82 46.81

IDE (R) [54] 72.54 46.00

IDE (R) + AQE [6] 73.20 50.14

IDE (R) + CDM [15] 73.66 49.53

IDE (R) + Ours 74.85 59.87

IDE (R) + XQDA 71.41 48.89

IDE (R) + XQDA + Ours 75.14 61.87

IDE (R) + KISSME 73.60 49.05

IDE (R) + KISSME + Ours 77.11 63.63

with all features, even with the IDE (R) which is trained on

the powerful ResNet-50 model. Our method gains 3.06%
improvement in rank-1 accuracy and significant 13.99%
improvement in mAP for IDE (R). Moreover, experiments

conducted with two metrics, KISSME [18] and XQDA [24]

verify the effectiveness of our method on different distance

metrics. Comparing with two popular re-ranking methods,

average query expansion (AQE) [6] and contextual dissim-

ilarity measure (CDM) [15], our method outperforms them

both in rank-1 accuracy and mAP. Many existing re-ranking

methods of person re-id are for single-shot setting or require

human interaction [25, 40]. Therefore, these methods are

not directly comparable to our method.

Table 3 compares the performance of our best approach,

IDE (R) + KISSME + ours, with other state-of-the-art meth-

ods. Our best method impressively outperforms the pre-

vious work and achieves large margin advances compared

with the state-of-the-art results in rank-1 accuracy, particu-

larly in mAP.

4.3. Experiments on CUHK03

Following the single-shot setting protocol in [23], we s-

plit the dataset into a training set containing 1,160 identities

and a testing set containing 100 identities. The test process

is repeated with 20 random splits. We set �1 to 7, �2 to 3 ,

and � to 0.85. Results for single-shot setting are shown in

Table 4. As we can see that, when using IDE feature, our

re-ranking results are almost equivalent to raw results. It

Table 3. Comparison of our method with state-of-the-art on the

Market-1501 dataset.

Method Rank 1 mAP

SDALF [8] 20.53 8.20

eSDC [48] 33.54 13.54

BOW [50] 34.40 14.09

PersonNet [42] 37.21 18.57

dCNN [37] 39.40 19.60

LOMO + XQDA [24] 43.79 22.22

MSTCNN [27] 45.10 -

WARCA [16] 45.16 -

MBCNN [38] 45.58 26.11

HistLBP+kLFDA [17] 46.50 -

TMA [31] 47.92 22.31

DLDA [41] 48.15 29.94

CAN [26] 48.24 24.43

SCSP [5] 51.90 26.35

DNS [47] 61.02 35.68

Gated [39] 65.88 39.55

IDE (R) + KISSME + Ours 77.11 63.63

Table 4. Comparison among various methods with our re-ranking

approach on the CUHK03 dataset under the single-shot setting.

Method
Labeled Detected

Rank 1 mAP Rank 1 mAP

LOMO + XQDA [24] 49.7 56.4 44.6 51.5

LOMO + XQDA + Ours 50.0 56.8 45.9 52.6

IDE (C) [54] 57.0 63.1 54.1 60.4

IDE (C) + Ours 57.2 63.2 54.2 60.5

IDE (C) + XQDA 61.7 67.6 58.9 64.9

IDE (C) + XQDA + Ours 61.6 67.6 58.5 64.7

is reasonable that our approach does not work. Since there

is only one positive for each identity in the gallery, our ap-

proach could not obtain sufficient contextual information.

Even so, our approach gains nearly 1% improvement for

rank-1 accuracy and mAP while applying LOMO feature

on both ‘labeled’ and ‘detected’ setting, except LOMO +

XQDA in ‘labeled’ setting. Experiments show that, in the

case of single-shot setting, our method does no harm to re-

sults, and has the chance to improve the performance.

Apart from the previous evaluation method, we also re-

port results using a new training/testing protocol similar to

that of Market-1501. The new protocol splits the dataset

into training set and testing set, which consist of 767 identi-

ties and 700 identities respectively. In testing, we randomly

select one image from each camera as the query for each

identity and use the rest of images to construct the gallery

set. The new protocol has two advantages:1) For each i-

dentity, there are multiple ground truths in the gallery. This

is more consistent with practical application scenario. 2)

Evenly dividing the dataset into training set and testing set

at once helps avoid repeating training and testing multiple

times. The divided training/testing sets and the evaluation

code are available in our source code. We set �1 to 20, �2
to 6, and � to 0.3. Results in Table 5 show that, in all cas-

es, our method significantly improves rank-1 accuracy and
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Table 5. Comparison among various methods with our re-ranking

approach on the CUHK03 dataset under the new training/testing

protocol.

Method
Labeled Detected

Rank

1

mAP Rank

1

mAP

LOMO + XQDA [24] 14.8 13.6 12.8 11.5

LOMO + XQDA + Ours 19.1 20.8 16.6 17.8

IDE (C) [54] 15.6 14.9 15.1 14.2

IDE (C) + Ours 19.1 21.3 19.3 20.6

IDE (C) + XQDA 21.9 20.0 21.1 19.0

IDE (C) + XQDA + Ours 25.9 27.8 26.4 26.9

IDE (R) [54] 22.2 21.0 21.3 19.7

IDE (R) + Ours 26.6 28.9 24.9 27.3

IDE (R) + XQDA 32.0 29.6 31.1 28.2

IDE (R) + XQDA + Ours 38.1 40.3 34.7 37.4

mAP. Especially for IDE(R) + XQDA, our method gains an

increase of 6.1% in rank-1 accuracy and 10.7% in mAP on

‘labeled’ setting.

4.4. Experiments on MARS

We also evaluate our method on video-based dataset. On

this dataset, we employ two features as the baseline meth-

ods, LOMO and IDE. For each sequence, we first extract

feature for each image, and use max pooling to combine al-

l features into a fixed-length vector. We set �1 to 20, �2
to 6, and � to 0.3 in this dataset. The performance of our

method on different features and metrics are reported in Ta-

ble 6. As we can see, our re-ranking method consistently

improves the rank-1 accuracy and mAP of the two differ-

ent features. Results compared with average query expan-

sion (AQE) [6] and contextual dissimilarity measure (CDM)

[15] show our method outperforms them in both rank-1 ac-

curacy and mAP. Moreover, our method can even improve

the rank-1 accuracy and mAP in all cases while discrimi-

native metrics are used. In particular, our method improves

the rank-1 accuracy from 70.51% to 73.94% and the mAP

from 55.12% to 68.45% for IDE (R) + XQDA. Experimen-

tal results demonstrate that our re-ranking method is also

effective on video-based re-ID problem. We believe that re-

sults of this problem will be further improved by combining

more sophisticated feature model with our method.

4.5. Experiments on PRW

We also evaluate our method on the end-to-end re-ID

dataset. This dataset is more challenging than image-based

and video-based datasets, since it requires to detect person

from a raw image and identify the correct person from the

detected galleries. Following [54], we first use DPM to de-

tect candidate bounding boxes of persons on a large raw

image, and then query on the detected bounding boxes. We

use LOMO and IDE to extract features for each bounding

box, and take these two methods as baselines. We set �1
to 20, �2 to 6, and � to 0.3. Experiment results are shown

Table 6. Comparison among various methods with our re-ranking

approach on the MARS dataset.

Method Rank 1 mAP

LOMO + KISSME 30.86 15.36

LOMO + KISSME + Ours 31.31 22.38

LOMO + XQDA [24] 31.82 17.00

LOMO + XQDA + Ours 33.99 23.20

IDE (C) [54] 61.72 41.17

IDE (C) + AQE [6] 61.83 47.02

IDE (C) + CDM [15] 62.05 44.23

IDE (C) + Ours 62.78 51.47

IDE (C) + KISSME 65.25 44.83

IDE (C) + KISSME + Ours 66.87 56.18

IDE (C) + XQDA 65.05 46.87

IDE (C) + XQDA + Ours 67.78 57.98

IDE (R) [54] 62.73 44.07

IDE (R) + AQE [6] 63.74 49.14

IDE (R) + CDM [15] 64.11 47.68

IDE (R) + Ours 65.61 57.94

IDE (R) + KISSME 70.35 53.27

IDE (R) + KISSME + Ours 72.32 67.29

IDE (R) + XQDA 70.51 55.12

IDE (R) + XQDA + Ours 73.94 68.45

Table 7. Comparison among various methods with our re-ranking

approach on the PRW dataset.

Method Rank 1 mAP

LOMO + XQDA [24] 34.91 13.43

LOMO + XQDA + Ours 37.14 19.22

IDE (C) [54] 51.03 25.09

IDE (C) + Ours 52.54 31.51

in Table 7. It can be seen that, our method consistently im-

proves the rank-1 accuracy and mAP of both LOMO and

IDE feature, demonstrating that our method is effective on

end-to-end re-ID task.

4.6. Parameters Analysis

The parameters of our method are analyzed in this sub-

section. The baseline methods are LOMO [24] and IDE

[54] trained on CaffeNet. We evaluate the influence of �1,

�2, and � on rank-1 accuracy and mAP on the Market-1501

dataset. To conduct experimental analyses, we randomly s-

plit the original training set into training and validation sets,

with 425 and 200 identities respectively.

Fig. 4 shows the impact of the size of k-reciprocal neigh-

bors set on rank-1 accuracy and mAP. It can be seen that,

our method consistently outperforms the baselines both on

the rank-1 accuracy and mAP with various values of �1. The

mAP first increases with the growth of �1, and then begins a

slow decline after �1 surpasses a threshold. Similarly, as �1
grows, the rank-1 accuracy first rises with fluctuations; and

after arriving at the optimal point around �1 = 20, it starts

to drop. With a too large value of �1, there will be more

false matches included in the k-reciprocal set, resulting in a

decline in performance.
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Figure 4. The impact of the parameter �1 on re-ID performance on

the Market-1501 dataset. We fix the �2 at 6 and � at 0.3.
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Figure 5. The impact of the parameter �2 on re-ID performance on

the Market-1501 dataset. We fix the �1 at 20 and � at 0.3.

The impact of �2 are shown in Fig. 5. When �2 is equal

to 1, the local query expansion is not considered. Obvious-

ly, the performance grows as �2 increases in a reasonable

range. Notice that, assigning a much too large value to �2
reduces the performance. Since it may lead to exponential-

ly containing false matches in local query expansion, which

undoubtedly harm the feature and thus the performance. As

a matter of fact, the local query expansion is very benefi-

cial for further enhancing the performance when setting an

appropriate value to �2.

The impact of the parameter � is shown in Fig. 6. Notice

that, when � is set to 0, we only consider the Jaccard dis-

tance as the final distance; in contrast, when � equal to 1, the

Jaccard distance is left out, and the result is exactly the base-

line result obtained using pure original distance. It can be

observed that when only Jaccard distance is considered, our

method consistently outperforms the baseline. This demon-

strates that the proposed Jaccard distance is effective for re-

ranking. Moreover, when simultaneously considering both

the original distance and the Jaccard distance, the perfor-

mance obtains a further improvement when the value of �

is around 0.3, demonstrating that the original distance is al-

so important for re-ranking.

In Fig. 7, four example results are shown. The proposed

method, IDE + Ours, effectively ranks more true persons in

the top of ranking list which are missed in the ranking list

of IDE.

5. Conclusion

In this paper, we address the re-ranking problem in per-

son re-identification (re-ID). We propose a �-reciprocal fea-

ture by encoding the k-reciprocal nearest neighbors into a

single vector, thus the re-ranking process can be readily

performed by vector comparison. To capture the similari-

ty relationships from similar samples, the local expansion
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Figure 6. The impact of the parameter � on re-ID performance on

the Market-1501 dataset. We fix the �1 at 20 and �2 at 6.
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Figure 7. Example results of four probes on the Market-1501

dataset. For each probe, the first row and the second correspond to

the ranking results produced by IDE and IDE + Ours, respectively.

Person surrounded by green box denotes the same person as the

probe.

query is proposed to obtain a more robust �-reciprocal fea-

ture. The final distance based on the combination of the o-

riginal distance and Jaccard distance produces effective im-

provement of the re-ID performance on several large-scale

datasets. It is worth mentioning that our approach is fully

automatic and unsupervised, and can be easily implemented

to any ranking result.
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