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Abstract

Previous approaches for scene text detection have al-

ready achieved promising performances across various

benchmarks. However, they usually fall short when deal-

ing with challenging scenarios, even when equipped with

deep neural network models, because the overall perfor-

mance is determined by the interplay of multiple stages and

components in the pipelines. In this work, we propose a sim-

ple yet powerful pipeline that yields fast and accurate text

detection in natural scenes. The pipeline directly predicts

words or text lines of arbitrary orientations and quadrilat-

eral shapes in full images, eliminating unnecessary inter-

mediate steps (e.g., candidate aggregation and word par-

titioning), with a single neural network. The simplicity of

our pipeline allows concentrating efforts on designing loss

functions and neural network architecture. Experiments on

standard datasets including ICDAR 2015, COCO-Text and

MSRA-TD500 demonstrate that the proposed algorithm sig-

nificantly outperforms state-of-the-art methods in terms of

both accuracy and efficiency. On the ICDAR 2015 dataset,

the proposed algorithm achieves an F-score of 0.7820 at

13.2fps at 720p resolution.

1. Introduction

Recently, extracting and understanding textual informa-

tion embodied in natural scenes have become increasingly

important and popular, which is evidenced by the unprece-

dented large numbers of participants of the ICDAR series

contests [30, 16, 15] and the launch of the TRAIT 2016

evaluation by NIST [1].

Text detection, as a prerequisite of the subsequent pro-

cesses, plays a critical role in the whole procedure of tex-

tual information extraction and understanding. Previous

text detection approaches [2, 33, 12, 7, 48] have already ob-

tained promising performances on various benchmarks in

this field. The core of text detection is the design of fea-

tures to distinguish text from backgrounds. Traditionally,
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Figure 1. Performance versus speed on ICDAR 2015 [15] text lo-

calization challenge. As can be seen, our algorithm significantly

surpasses competitors in accuracy, whilst running very fast. The

specifications of hardware used are listed in Tab. 6.

features are manually designed [5, 25, 40, 10, 26, 45] to

capture the properties of scene text, while in deep learning

based methods [3, 13, 11, 12, 7, 48] effective features are

directly learned from training data.

However, existing methods, either conventional or deep

neural network based, mostly consist of several stages and

components, which are probably sub-optimal and time-

consuming. Therefore, the accuracy and efficiency of such

methods are still far from satisfactory.

In this paper, we propose a fast and accurate scene text

detection pipeline that has only two stages. The pipeline

utilizes a fully convolutional network (FCN) model that

directly produces word or text-line level predictions, ex-

cluding redundant and slow intermediate steps. The pro-

duced text predictions, which can be either rotated rectan-

gles or quadrangles, are sent to Non-Maximum Suppression

to yield final results. Compared with existing methods, the

proposed algorithm achieves significantly enhanced perfor-

mance, while running much faster, according to the qualita-

tive and quantitative experiments on standard benchmarks.

Specifically, the proposed algorithm achieves an F-score

of 0.7820 on ICDAR 2015 [15] (0.8072 when tested in

multi-scale), 0.7608 on MSRA-TD500 [40] and 0.3945 on
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Figure 2. Comparison of pipelines of several recent works on scene text detection: (a) Horizontal word detection and recognition pipeline

proposed by Jaderberg et al. [12]; (b) Multi-orient text detection pipeline proposed by Zhang et al. [48]; (c) Multi-orient text detection

pipeline proposed by Yao et al. [41]; (d) Horizontal text detection using CTPN, proposed by Tian et al. [34]; (e) Our pipeline, which

eliminates most intermediate steps, consists of only two stages and is much simpler than previous solutions.

COCO-Text [36], outperforming previous state-of-the-art

algorithms in performance while taking much less time on

average (13.2fps at 720p resolution on a Titan-X GPU for

our best performing model, 16.8fps for our fastest model).

The contributions of this work are three-fold:

• We propose a scene text detection method that consists

of two stages: a Fully Convolutional Network and an

NMS merging stage. The FCN directly produces text

regions, excluding redundant and time-consuming in-

termediate steps.

• The pipeline is flexible to produce either word level

or line level predictions, whose geometric shapes can

be rotated boxes or quadrangles, depending on specific

applications.

• The proposed algorithm significantly outperforms

state-of-the-art methods in both accuracy and speed.

2. Related Work

Scene text detection and recognition have been active re-

search topics in computer vision for a long period of time.

Numerous inspiring ideas and effective approaches [5, 25,

26, 24, 27, 37, 11, 12, 7, 41, 42, 31] have been investigated.

Comprehensive reviews and detailed analyses can be found

in survey papers [50, 35, 43]. This section will focus on

works that are mostly relevant to the proposed algorithm.

Conventional approaches rely on manually designed fea-

tures. Stroke Width Transform (SWT) [5] and Maximally

Stable Extremal Regions (MSER) [25, 26] based methods

generally seek character candidates via edge detection or

extremal region extraction. Zhang et al. [47] made use of

the local symmetry property of text and designed various

features for text region detection. FASText [2] is a fast text

detection system that adapted and modified the well-known

FAST key point detector for stroke extraction. However,

these methods fall behind of those based on deep neural

networks, in terms of both accuracy and adaptability, es-

pecially when dealing with challenging scenarios, such as

low resolution and geometric distortion.

Recently, the area of scene text detection has entered a

new era that deep neural network based algorithms [11, 13,

48, 7] have gradually become the mainstream. Huang et

al. [11] first found candidates using MSER and then em-

ployed a deep convolutional network as a strong classifier

to prune false positives. The method of Jaderberg et al. [13]

scanned the image in a sliding-window fashion and pro-

duced a dense heatmap for each scale with a convolutional

neural network model. Later, Jaderberg et al. [12] employed

both a CNN and an ACF to hunt word candidates and fur-

ther refined them using regression. Tian et al. [34] devel-

oped vertical anchors and constructed a CNN-RNN joint

model to detect horizontal text lines. Different from these

methods, Zhang et al. [48] proposed to utilize FCN [23] for

heatmap generation and to use component projection for

orientation estimation. These methods obtained excellent

performance on standard benchmarks. However, as illus-

trated in Fig. 2(a-d), they mostly consist of multiple stages

and components, such as false positive removal by post fil-

tering, candidate aggregation, line formation and word par-

tition. The multitude of stages and components may require

exhaustive tuning, leading to sub-optimal performance, and

add to processing time of the whole pipeline.

In this paper, we devise a deep FCN-based pipeline that

directly targets the final goal of text detection: word or text-

line level detection. As depicted in Fig. 2(e), the model

abandons unnecessary intermediate components and steps,

and allows for end-to-end training and optimization. The re-

sultant system, equipped with a single, light-weighted neu-

ral network, surpasses all previous methods by an obvious

margin in both performance and speed.

3. Methodology

The key component of the proposed algorithm is a neu-

ral network model, which is trained to directly predict the

existence of text instances and their geometries from full
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Figure 3. Structure of our text detection FCN.

images. The model is a fully-convolutional neural network

adapted for text detection that outputs dense per-pixel pre-

dictions of words or text lines. This eliminates intermedi-

ate steps such as candidate proposal, text region formation

and word partition. The post-processing steps only include

thresholding and NMS on predicted geometric shapes. The

detector is named as EAST, since it is an Efficient and

Accuracy Scene Text detection pipeline.

3.1. Pipeline

A high-level overview of our pipeline is illustrated in

Fig. 2(e). The algorithm follows the general design of

DenseBox [9], in which an image is fed into the FCN and

multiple channels of pixel-level text score map and geome-

try are generated.

One of the predicted channels is a score map whose pixel

values are in the range of [0, 1]. The remaining channels

represent geometries that encloses the word from the view

of each pixel. The score stands for the confidence of the

geometry shape predicted at the same location.

We have experimented with two geometry shapes for

text regions, rotated box (RBOX) and quadrangle (QUAD),

and designed different loss functions for each geometry.

Thresholding is then applied to each predicted region,

where the geometries whose scores are over the prede-

fined threshold is considered valid and saved for later non-

maximum-suppression. Results after NMS are considered

the final output of the pipeline.

3.2. Network Design

Several factors must be taken into account when design-

ing neural networks for text detection. Since the sizes of

word regions, as shown in Fig. 5, vary tremendously, deter-

mining the existence of large words would require features

from late-stage of a neural network, while predicting ac-

curate geometry enclosing a small word regions need low-

level information in early stages. Therefore the network

must use features from different levels to fulfill these re-

quirements. HyperNet [19] meets these conditions on fea-

tures maps, but merging a large number of channels on large

feature maps would significantly increase the computation

overhead for later stages.

In remedy of this, we adopt the idea from U-shape [29]

to merge feature maps gradually, while keeping the up-

sampling branches small. Together we end up with a net-

work that can both utilize different levels of features and

keep a small computation cost.

A schematic view of our model is depicted in Fig. 3. The

model can be decomposed in to three parts: feature extrac-

tor stem, feature-merging branch and output layer.

The stem can be a convolutional network pre-trained

on ImageNet [4] dataset, with interleaving convolution and

pooling layers. Four levels of feature maps, denoted as fi,

are extracted from the stem, whose sizes are 1
32 , 1

16 , 1
8 and

1
4 of the input image, respectively. In Fig. 3, PVANet [17]

is depicted. In our experiments, we also adopted the

well-known VGG16 [32] model, where feature maps after

pooling-2 to pooling-5 are extracted.

In the feature-merging branch, we gradually merge them:

gi =

{

unpool(hi) if i ≤ 3

conv3×3(hi) if i = 4
(1)

hi =

{

fi if i = 1

conv3×3(conv1×1([gi−1; fi])) otherwise
(2)

where gi is the merge base, and hi is the merged feature

map, and the operator [·; ·] represents concatenation along

the channel axis. In each merging stage, the feature map

from the last stage is first fed to an unpooling layer to dou-

ble its size, and then concatenated with the current feature

map. Next, a conv1×1 bottleneck [8] cuts down the num-

ber of channels and reduces computation, followed by a

conv3×3 that fuses the information to finally produce the

output of this merging stage. Following the last merging

stage, a conv3×3 layer produces the final feature map of the

merging branch and feed it to the output layer.

The number of output channels for each convolution is

shown in Fig. 3. We keep the number of channels for con-

volutions in branch small, which adds only a fraction of

computation overhead over the stem, making the network

computation-efficient. The final output layer contains sev-

eral conv1×1 operations to project 32 channels of feature

maps into 1 channel of score map Fs and a multi-channel

geometry map Fg. The geometry output can be either one

of RBOX or QUAD, summarized in Tab. 1

For RBOX, the geometry is represented by 4 channels of

axis-aligned bounding box (AABB) R and 1 channel rota-

tion angle θ. The formulation of R is the same as that in

[9], where the 4 channels represents 4 distances from the
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Geometry channels description

AABB 4 G = R = {di|i ∈ {1, 2, 3, 4}}
RBOX 5 G = {R, θ}
QUAD 8 G = Q = {(∆xi,∆yi)|i ∈ {1, 2, 3, 4}}

Table 1. Output geometry design

box edge
distances

line angle

(a) (b)

(c) (d) (e)

Figure 4. Label generation process: (a) Text quadrangle (yellow

dashed) and the shrunk quadrangle (green solid); (b) Text score

map; (c) RBOX geometry map generation; (d) 4 channels of dis-

tances of each pixel to rectangle boundaries; (e) Rotation angle.

pixel location to the top, right, bottom, left boundaries of

the rectangle respectively.

For QUAD Q, we use 8 numbers to denote the coordi-

nate shift from four corner vertices {pi | i∈{1, 2, 3, 4}} of

the quadrangle to the pixel location. As each distance off-

set contains two numbers (∆xi,∆yi), the geometry output

contains 8 channels.

3.3. Label Generation

3.3.1 Score Map Generation for Quadrangle

Without loss of generality, we only consider the case where

the geometry is a quadrangle. The positive area of the quad-

rangle on the score map is designed to be roughly a shrunk

version of the original one, illustrated in Fig. 4 (a).

For a quadrangle Q = {pi|i ∈ {1, 2, 3, 4}}, where pi =
{xi, yi} are vertices on the quadrangle in clockwise order.

To shrink Q, we first compute a reference length ri for each

vertex pi as

ri = min(D(pi, p(i mod 4)+1),

D(pi, p((i+3) mod 4)+1))
(3)

where D(pi, pj) is the L2 distance between pi and pj .

We first shrink the two longer edges of a quadrangle,

and then the two shorter ones. For each pair of two op-

posing edges, we determine the “longer” pair by comparing

the mean of their lengths. For each edge 〈pi, p(i mod 4)+1〉,
we shrink it by moving its two endpoints inward along the

edge by 0.3ri and 0.3r(i mod 4)+1 respectively.

3.3.2 Geometry Map Generation

As discussed in Sec. 3.2, the geometry map is either one

of RBOX or QUAD. The generation process for RBOX is

illustrated in Fig. 4 (c-e).

For those datasets whose text regions are annotated in

QUAD style (e.g., ICDAR 2015), we first generate a rotated

rectangle that covers the region with minimal area. Then

for each pixel which has positive score, we calculate its dis-

tances to the 4 boundaries of the text box, and put them

to the 4 channels of RBOX ground truth. For the QUAD

ground truth, the value of each pixel with positive score in

the 8-channel geometry map is its coordinate shift from the

4 vertices of the quadrangle.

3.4. Loss Functions

The loss can be formulated as

L = Ls + λgLg (4)

where Ls and Lg represents the losses for the score map and

the geometry, respectively, and λg weighs the importance

between two losses. In our experiment, we set λg to 1.

3.4.1 Loss for Score Map

In most state-of-the-art detection pipelines, training images

are carefully processed by balanced sampling and hard neg-

ative mining to tackle with the imbalanced distribution of

target objects [9, 28]. Doing so would potentially improve

the network performance. However, using such techniques

inevitably introduces a non-differentiable stage and more

parameters to tune and a more complicated pipeline, which

contradicts our design principle.

To facilitate a simpler training procedure, we use class-

balanced cross-entropy introduced in [38], given by

Ls = balanced-xent(Ŷ,Y∗)

= −βY∗ log Ŷ − (1− β)(1−Y∗) log(1− Ŷ)
(5)

where Ŷ = Fs is the prediction of the score map, and Y∗

is the ground truth. The parameter β is the balancing factor

between positive and negative samples, given by

β = 1−

∑

y∗∈Y∗ y
∗

|Y∗|
. (6)

This balanced cross-entropy loss is first adopted in text

detection by Yao et al. [41] as the objective function for

score map prediction. We find it works well in practice.

3.4.2 Loss for Geometries

One challenge for text detection is that the sizes of text in

natural scene images vary tremendously. Directly using L1
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or L2 loss for regression would guide the loss bias towards

larger and longer text regions. As we need to generate ac-

curate text geometry prediction for both large and small

text regions, the regression loss should be scale-invariant.

Therefore, we adopt the IoU loss in the AABB part of

RBOX regression, and a scale-normalized smoothed-L1

loss for QUAD regression.

RBOX For the AABB part, we adopt IoU loss in [46],

since it is invariant against objects of different scales.

LAABB = − log IoU(R̂,R∗) = − log
|R̂ ∩R∗|

|R̂ ∪R∗|
(7)

where R̂ represents the predicted AABB geometry and R∗

is its corresponding ground truth. It is easy to see that the

width and height of the intersected rectangle |R̂ ∩R∗| are

wi = min(d̂2, d
∗

2) + min(d̂4, d
∗

4)

hi = min(d̂1, d
∗

1) + min(d̂3, d
∗

3)
(8)

where d1, d2, d3 and d4 represents the distance from a pixel

to the top, right, bottom and left boundary of its correspond-

ing rectangle, respectively. The union area is given by

|R̂ ∪R∗| = |R̂|+ |R∗| − |R̂ ∩R∗|. (9)

Therefore, both the intersection/union area can be computed

easily. Next, the loss of rotation angle is computed as

Lθ(θ̂, θ
∗) = 1− cos(θ̂ − θ∗). (10)

where θ̂ is the prediction to the rotation angle and θ∗ repre-

sents the ground truth. Finally, the overall geometry loss is

the weighted sum of AABB loss and angle loss, given by

Lg = LAABB + λθLθ. (11)

Where λθ is set to 10 in our experiments.

Note that we compute LAABB regardless of rotation an-

gle. This can be seen as an approximation of quadrangle

IoU when the angle is perfectly predicted. Although it is

not the case during training, it could still impose the correct

gradient for the network to learn to predict R̂.

QUAD We extend the smoothed-L1 loss proposed in [6]

by adding an extra normalization term designed for word

quadrangles, which is typically longer in one direction. Let

all coordinate values of Q be an ordered set

CQ = {x1, y1, x2, y2, . . . , x4, y4} (12)

then the loss can be written as

Lg = LQUAD(Q̂,Q∗)

= min
Q̃∈PQ∗

∑

ci∈CQ,
c̃i∈C

Q̃

smoothedL1(ci − c̃i)

8×NQ∗

(13)

where the normalization term NQ∗ is the shorted edge

length of the quadrangle, given by

NQ∗ =
4

min
i=1

D(pi, p(i mod 4)+1), (14)

and PQ is the set of all equivalent quadrangles of Q∗ with

different vertices ordering. This ordering permutation is re-

quired since the annotations of quadrangles in the public

training datasets are inconsistent.

3.5. Training

The network is trained end-to-end using ADAM [18]

optimizer. To speed up learning, we uniformly sample

512x512 crops from images to form a minibatch of size

24. Learning rate of ADAM starts from 1e-3, decays to

one-tenth every 27300 minibatches, and stops at 1e-5. The

network is trained until performance stops improving.

3.6. Locality­Aware NMS

To form the final results, the geometries survived after

thresholding should be merged by NMS. A naı̈ve NMS al-

gorithm runs in O(n2) where n is the number of candidate

geometries, which is unacceptable as we are facing tens of

thousands of geometries from dense predictions.

Under the assumption that the geometries from nearby

pixels tend to be highly correlated, we proposed to merge

the geometries row by row, and while merging geometries

in the same row, we will iteratively merge the geometry cur-

rently encountered with the last merged one. This improved

technique runs in O(n) in best scenarios1. Even though its

worst case is the same as the naı̈ve one, as long as the local-

ity assumption holds, the algorithm runs sufficiently fast in

practice. The procedure is summarized in Algorithm 1

It is worth mentioning that, in WEIGHTEDMERGE(g, p),
the coordinates of merged quadrangle are weight-averaged

by the scores of two given quadrangles. To be specific, if

a = WEIGHTEDMERGE(g, p), then ai = V (g)gi +V (p)pi
and V (a) = V (g)+V (p), where ai is one of the coordinates

of a subscripted by i, and V (a) is the score of geometry a.

In fact, there is a subtle difference that we are ”averag-

ing” rather than ”selecting” geometries, as in a standard

NMS procedure will do, acting as a voting mechanism,

which in turn introduces a stabilization effect when feed-

ing videos. Nonetheless, we still adopt the word ”NMS”

for functional description.

4. Experiments

To compare the proposed algorithm with existing meth-

ods, we conducted qualitative and quantitative experiments

on three public benchmarks: ICDAR2015, COCO-Text and

MSRA-TD500.

1Consider the case that only a single text line appears the image. In

such case, all geometries will be highly overlapped if the network is suffi-

ciently powerful
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Algorithm 1 Locality-Aware NMS

1: function NMSLOCALITY(geometries)

2: S ← ∅, p← ∅

3: for g ∈ geometries in row first order do

4: if p 6= ∅ ∧ SHOULDMERGE(g, p) then

5: p← WEIGHTEDMERGE(g, p)
6: else

7: if p 6= ∅ then

8: S ← S ∪ {p}
9: end if

10: p← g

11: end if

12: end for

13: if p 6= ∅ then

14: S ← S ∪ {p}
15: end if

16: return STANDARDNMS(S)
17: end function

4.1. Benchmark Datasets

ICDAR 2015 is used in Challenge 4 of ICDAR 2015 Ro-

bust Reading Competition [15]. It includes a total of 1500

pictures, 1000 of which are used for training and the re-

maining are for testing. The text regions are annotated by

4 vertices of the quadrangle, corresponding to the QUAD

geometry in this paper. We also generate RBOX output

by fitting a rotated rectangle which has the minimum area.

These images are taken by Google Glass in an incidental

way. Therefore text in the scene can be in arbitrary orien-

tations, or suffer from motion blur and low resolution. We

also used the 229 training images from ICDAR 2013.

COCO-Text [36] is the largest text detection dataset to

date. It reuses the images from MS-COCO dataset [22]. A

total of 63,686 images are annotated, in which 43,686 are

chosen to be the training set and the rest 20,000 for test-

ing. Word regions are annotated in the form of axis-aligned

bounding box (AABB), which is a special case of RBOX.

For this dataset, we set angle θ to zero. We use the same

data processing and test method as in ICDAR 2015.

MSRA-TD500 [40] is a dataset comprises of 300 train-

ing images and 200 test images. Text regions are of arbi-

trary orientations and annotated at sentence level. Differ-

ent from the other datasets, it contains text in both English

and Chinese. The text regions are annotated in RBOX for-

mat. Since the number of training images is too few to learn

a deep model, we also harness 400 images from HUST-

TR400 dataset [39] as training data.

4.2. Base Networks

As except for COCO-Text, all text detection datasets are

relatively small compared to the datasets for general object

detection[21, 22], therefore if a single network is adopted

Network Description

PVANET [17] small and fast model

PVANET2x [17] PVANET with 2x number of channels

VGG16 [32] commonly used model

Table 2. Base Models

for all the benchmarks, it may suffer from either over-

fitting or under-fitting. We experimented with three differ-

ent base networks, with different output geometries, on all

the datasets to evaluate the proposed framework. These net-

works are summarized in Tab. 2.

VGG16 [32] is widely used as base network in many

tasks [28, 38] to support subsequent task-specific fine-

tuning, including text detection [34, 48, 49, 7]. There are

two drawbacks of this network: (1). The receptive field for

this network is small. Each pixel in output of conv5 3 only

has a receptive field of 196. (2). It is a rather large network.

PVANET is a light weight network introduced in

[17], aiming as a substitution of the feature extractor in

Faster-RCNN [28] framework. Since it is too small for

GPU to fully utilizes computation parallelism, we also

adopt PVANET2x that doubles the channels of the original

PVANET, exploiting more computation parallelism while

running slightly slower than PVANET. This is detailed in

Sec. 4.5. The receptive field of the output of the last convo-

lution layer is 809, which is much larger than VGG16.

The models are pre-trained on the ImageNet dataset [21].

4.3. Qualitative Results

Fig. 5 depicts several detection examples by the pro-

posed algorithm. It is able to handle various challenging

scenarios, such as non-uniform illumination, low resolu-

tion, varying orientation and perspective distortion. More-

over, due to the voting mechanism in the NMS procedure,

the proposed method shows a high level of stability on

videos with various forms of text instances2.

The intermediate results of the proposed method are il-

lustrated in Fig. 6. As can be seen, the trained model pro-

duces highly accurate geometry maps and score map, in

which detections of text instances in varying orientations

are easily formed.

4.4. Quantitative Results

As shown in Tab. 3 and Tab. 4, our approach outperforms

previous state-of-the-art methods by a large margin on IC-

DAR 2015 and COCO-Text.

In ICDAR 2015 Challenge 4, when images are fed at

their original scale, the proposed method achieves an F-

score of 0.7820. When tested at multiple scales 3 using the

2Online video: https://youtu.be/o5asMTdhmvA. Note that

each frame in the video is processed independently.
3At relative scales of 0.5, 0.7, 1.0, 1.4, and 2.0.
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(a) (b) (c)

Figure 5. Qualitative results of the proposed algorithm. (a) ICDAR 2015. (b) MSRA-TD500. (c) COCO-Text.

(a)

(c)

(b)

(d)

Figure 6. Intermediate results of the proposed algorithm. (a) Esti-

mated geometry map for d1 and d4. (b) Estimated geometry map

for d2 and d3. (c) Estimated angle map for text instances. (d) Pre-

dicted rotated rectangles of text instances. Maps in (a), (b) and (c)

are color-coded to represent variance (for d1, d2, d3 and d4) and

invariance (for angle) in an pixel-wise manner. Note that in the

geometry maps only the values of foreground pixels are valid.

same network, our method reaches 0.8072 in F-score, which

is nearly 0.16 higher than the best method [41] in terms of

absolute value (0.8072 vs. 0.6477).

Comparing the results using VGG16 network[34, 48,

41], the proposed method also outperforms best previous

work [41] by 0.0924 when using QUAD output, 0.116 when

using RBOX output. Meanwhile these networks are quite

efficient, as will be shown in Sec.4.5.

In COCO-Text, all of the three settings of the proposed

algorithm result in higher accuracy than previous top per-

former [41]. Specifically, the improvement over [41] in F-

score is 0.0614 while that in recall is 0.053, which confirm

the advantage of the proposed algorithm, considering that

COCO-Text is the largest and most challenging benchmark

to date. Note that we also included the results from [36] as

reference, but these results are actually not valid baselines,

since the methods (A, B and C) are used in data annotation.

The improvements of the proposed algorithm over pre-

vious methods prove that a simple text detection pipeline,

which directly targets the final goal and eliminating redun-

dant processes, can beat elaborated pipelines, even those

integrated with large neural network models.

As shown in Tab. 5, on MSRA-TD500 all of the three set-

tings of our method achieve excellent results. The F-score

of the best performer (Ours+PVANET2x) is slightly higher

than that of [41]. Compared with the method of Zhang et

al. [48], the previous published state-of-the-art system, the

best performer (Ours+PVANET2x) obtains an improvement

of 0.0208 in F-score and 0.0428 in precision.

Note that on MSRA-TD500 our algorithm equipped with

VGG16 performs much poorer than that with PVANET and

PVANET2x (0.7023 vs. 0.7445 and 0.7608), the main rea-

son is that the effective receptive field of VGG16 is smaller

than that of PVANET and PVANET2x, while the evalua-

tion protocol of MSRA-TD500 requires text detection algo-

rithms output line level instead of word level predictions.

In addition, we also evaluated Ours+PVANET2x on the

ICDAR 2013 benchmark. It achieves 0.8267, 0.9264 and

0.8737 in recall, precision and F-score, which are compa-

rable with the previous state-of-the-art method [34], which

obtains 0.8298, 0.9298 and 0.8769 in recall, precision and

F-score, respectively.

4.5. Speed Comparison

The overall speed comparison is demonstrated in Tab. 6.

The numbers we reported are averages from running
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Algorithm Recall Precision F-score

Ours + PVANET2x RBOX MS* 0.7833 0.8327 0.8072

Ours + PVANET2x RBOX 0.7347 0.8357 0.7820

Ours + PVANET2x QUAD 0.7419 0.8018 0.7707

Ours + VGG16 RBOX 0.7275 0.8046 0.7641

Ours + PVANET RBOX 0.7135 0.8063 0.7571

Ours + PVANET QUAD 0.6856 0.8119 0.7434

Ours + VGG16 QUAD 0.6895 0.7987 0.7401

Yao et al. [41] 0.5869 0.7226 0.6477

Tian et al. [34] 0.5156 0.7422 0.6085

Zhang et al. [48] 0.4309 0.7081 0.5358

StradVision2 [15] 0.3674 0.7746 0.4984

StradVision1 [15] 0.4627 0.5339 0.4957

NJU [15] 0.3625 0.7044 0.4787

AJOU [20] 0.4694 0.4726 0.4710

Deep2Text-MO [45, 44] 0.3211 0.4959 0.3898

CNN MSER [15] 0.3442 0.3471 0.3457

Table 3. Results on ICDAR 2015 Challenge 4 Incidental Scene

Text Localization task. MS means multi-scale testing.

Algorithm Recall Precision F-score

Ours + VGG16 0.324 0.5039 0.3945

Ours + PVANET2x 0.340 0.406 0.3701

Ours + PVANET 0.302 0.3981 0.3424

Yao et al. [41] 0.271 0.4323 0.3331

Baselines from [36]

A 0.233 0.8378 0.3648

B 0.107 0.8973 0.1914

C 0.047 0.1856 0.0747

Table 4. Results on COCO-Text.

Algorithm Recall Precision F-score

Ours + PVANET2x 0.6743 0.8728 0.7608

Ours + PVANET 0.6713 0.8356 0.7445

Ours + VGG16 0.6160 0.8167 0.7023

Yao et al. [41] 0.7531 0.7651 0.7591

Zhang et al. [48] 0.67 0.83 0.74

Yin et al. [44] 0.63 0.81 0.71

Kang et al. [14] 0.62 0.71 0.66

Yin et al. [45] 0.61 0.71 0.66

TD-Mixture [40] 0.63 0.63 0.60

TD-ICDAR [40] 0.52 0.53 0.50

Epshtein et al. [5] 0.25 0.25 0.25

Table 5. Results on MSRA-TD500.

through 500 test images from the ICDAR 2015 dataset at

their original resolution (1280x720) using our best perform-

ing networks. These experiments were conducted on a

server using a single NVIDIA Titan X graphic card with

Maxwell architecture and an Intel E5-2670 v3 @ 2.30GHz

CPU. For the proposed method, the post-processing in-

cludes thresholding and NMS, while others should refer to

Approach Res. Device T1/T2 (ms) FPS

Ours + PVANET 720p Titan X 58.1 / 1.5 16.8

Ours + PVANET2x 720p Titan X 73.8 / 1.7 13.2

Ours + VGG16 720p Titan X 150.9 / 2.4 6.52

Yao et al. [41] 480p K40m 420 / 200 1.61

Tian et al. [34] ss-600* GPU 130 / 10 7.14

Zhang et al. [48]* MS* Titan X 2100 / N/A 0.476

Table 6. Overall time consumption compared on different meth-

ods. T1 is the network prediction time, and T2 accounts for the

time used on post-processing. For Tian et al. [34], ss-600 means

short side is 600, and 130ms includes two networks. Note that

they reach their best result on ICDAR 2015 using a short edge of

2000, which is much larger than ours. For Zhang et al. [48], MS

means they used 200, 500, 1000 three scales, and the result is ob-

tained on MSRA-TD500. The theoretical flops per pixel for our

three models are 18KOps, 44.4KOps and 331.6KOps respectively,

for PVANET, PVANET2x and VGG16.

their original paper.

While the proposed method significantly outperforms

state-of-the-art methods, the computation cost is kept very

low, attributing to the simple and efficient pipeline. As

can be observed from Tab. 6, the fastest setting of our

method runs at a speed of 16.8 FPS, while slowest set-

ting runs at 6.52 FPS. Even the best performing model

Ours+PVANET2x runs at a speed of 13.2 FPS. This confirm

that our method is among the most efficient text detectors

that achieve state-of-the-art performance on benchmarks.

4.6. Limitations

The maximal size of text instances the detector can han-

dle is proportional to the receptive field of the network. This

limits the capability of the network to predict even longer

text regions like text lines running across the images.

Also, the algorithm might miss or give imprecise pre-

dictions for vertical text instances as they take only a small

portion of text regions in the ICDAR 2015 training set.

5. Conclusion and Future Work

We have presented a scene text detector that directly pro-

duces word or line level predictions from full images with

a single neural network. By incorporating proper loss func-

tions, the detector can predict either rotated rectangles or

quadrangles for text regions, depending on specific appli-

cations. The experiments on standard benchmarks confirm

that the proposed algorithm substantially outperforms pre-

vious methods in terms of both accuracy and efficiency.

Possible directions for future research include: (1) adapt-

ing the geometry formulation to allow direct detection of

curved text; (2) integrating the detector with a text recog-

nizer; (3) extending the idea to general object detection.
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