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Abstract

Deep Convolution Neural Networks (DCNNs) are capa-

ble of learning unprecedentedly effective image representa-

tions. However, their ability in handling significant local

and global image rotations remains limited. In this paper,

we propose Active Rotating Filters (ARFs) that actively

rotate during convolution and produce feature maps with

location and orientation explicitly encoded. An ARF acts

as a virtual filter bank containing the filter itself and its

multiple unmaterialised rotated versions. During back-

propagation, an ARF is collectively updated using errors

from all its rotated versions. DCNNs using ARFs, referred

to as Oriented Response Networks (ORNs), can produce

within-class rotation-invariant deep features while main-

taining inter-class discrimination for classification tasks.

The oriented response produced by ORNs can also be

used for image and object orientation estimation tasks.

Over multiple state-of-the-art DCNN architectures, such

as VGG, ResNet, and STN, we consistently observe that

replacing regular filters with the proposed ARFs leads to

significant reduction in the number of network parameters

and improvement in classification performance. We report

the best results on several commonly used benchmarks 1.

1. Introduction

The problem of orientation information encoding has

been extensively investigated in hand-crafted features, e.g.,

Gabor features [15, 17], HOG [9], and SIFT [31]. In

Deep Convolution Neural Networks (DCNNs), the inherent

properties of convolution and pooling alleviate the effect of

local transitions and warps; however, lacking the capability

to handle large image rotation limits DCNN’s performance

in many visual tasks including object boundary detection

[16, 32], multi-oriented object detection [6], and image

classification [20, 23].

1Source code is publicly available at zhouyanzhao.github.io/ORN

Figure 1. An ARF is a filter of the size W × W × N , and

viewed as N-directional points on a W × W grid. The form of

the ARF enables it to effectively define relative rotations, e.g., the

head rotation of a bird about its body. An ARF actively rotates

during convolution; thus it acts as a virtual filter bank containing

the canonical filter itself and its multiple unmaterialised rotated

versions. In this example, the location and orientation of birds in

different postures are captured by the ARF and explicitly encoded

into a feature map.

Due to the lack of ability in fully understanding rota-

tions, the most straightforward way for DCNN to decrease

its loss is “learning by rote”. The visualization of convolu-

tional filters [11, 46] indicates that different rotated versions

of one identical image structure are often redundantly

learned in low-level, middle-level, and relatively high-level

filters, such as those in the VGG-16 model trained on

ImageNet [10]. When object parts rotate relatively to

objects themselves, e.g., bird’s head to its body, it requires

learning multiple combinations of each orientation-distinct

component with more convolutional filters. In such cases,

the network could give up understanding the concept of the

whole object and tend to use a discriminative part of it to

make the final decisions [47]. The learning-by-rote strategy

needs a larger number of parameters to generate orientation-

redundant filters, significantly increasing both the training

time and the risk of network over-fitting. Besides, the

training data is not sufficiently utilized since the limited

instances are implicitly split into subsets, which could

increase the possibility of filter under-fitting. To alleviate

such a problem, data augmentation, e.g., rotating each
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training sample into multi-oriented versions, is often used.

Data augmentation improves the learning performance by

extending the training set. However, it usually requires

more network parameters and higher training cost.

In this paper, we propose Active Rotating Filters (ARFs)

and leverage Oriented Response Convolution (ORConv)

to generate feature maps with orientation channels that

explicitly encode the location and orientation information of

discriminative patterns. Compared to conventional filters,

ARFs have an extra dimension to define the arrangement

of oriented structures. During the convolution, each ARF

rotates and produces feature maps to capture the response

of receptive fields from multiple orientations, as shown in

Fig. 1. The feature maps with orientation channels carry

the oriented response along with the hierarchical network

to produce high-level representations, endowing DCNNs

the capability of capturing global/local rotations and the

generalization ability for rotated samples never seen before.

Instead of introducing extra functional modules or

new network topologies, our method implements the prior

knowledge of rotation to the most basic element of DCNNs,

i.e., the convolution operator. Thus, it can be naturally

fused with modern DCNN architectures, upgrading them to

more expressive and compact Oriented Response Networks

(ORNs). With the orientation information that ORNs

produce, we can either apply SIFT-like feature alignment

to achieve rotation invariance or perform image/object

orientation estimation. The contributions of this paper are

summarized as follows:

• We specified Active Rotating Filters and Oriented Re-

sponse Convolution, improved the most fundamental

module of DCNN and endowed DCNN the capability

of explicitly encoding hierarchical orientation infor-

mation. We further applied such orientation infor-

mation to rotation-invariant image classification and

object orientation estimation.

• We upgraded successful DCNNs including VGG,

ResNet, TI-Pooling and STN to ORNs, achieving

state-of-the-art performance with significantly fewer

network parameters on popular benchmarks.

2. Related Works

2.1. Handcrafted features.

Orientation information has been explicitly encoded in

classical hand-crafted features including Weber’s Law de-

scriptor [5], Gabor features [15, 17], SIFT [31], and LBP

[33, 1]. SIFT descriptor [31] and its modification with

affine-local regions [25] find the dominant orientation of

a feature point, according to which statistics of local gra-

dient directions of image intensities are accumulated to

give a summarizing description of local image structures.

With dominant orientation based feature alignment, SIFT

achieves invariance to rotation and robustness to moderate

perspective transforms [2, 12]. Starting from the gray

values of a circularly symmetric neighbor set of pixels in

a local neighborhood, LBP derives an operator that is by

definition invariant against any monotonic transformation

of the gray scale [33, 1]. Rotation invariance is achieved

by minimizing the LBP code value using the bit cyclic

shift. Other representative descriptors including CF-HOG

[38] that uses orientation alignment and RI-HOG [30] that

leverages radial gradient transform to be rotation invariant.

2.2. Deep Convolutional Neural Networks.

Deep Convolution Neural Networks have the capability

of processing transforms including moderate transitions,

scale changes, and small rotations. Such capability is

endowed with the inherent properties of convolutional op-

erations, redundant convolutional filters, and hierarchical

spatial pooling [35, 20]. More general pooling operations

[26] permit to consider invariance to local deformation that

however does not correspond to specific prior knowledge.

Data augmentation. Given rich, and often redundant,

convolutional filters, data augmentation can be used to

achieve local/global transform invariance [42]. Despite

the effectiveness of data augmentation, the main drawback

lies in that learning all the possible transformations of

augmented data usually requires more network parameters,

which significantly increases the training cost and the risk

of over-fitting. Most recent TI-Pooling [23] alleviates

the drawbacks by using parallel network architectures for

the considered transform set and applying the transform

invariant pooling operator on their outputs before the top

layer. The essence of TI-Pooling comprises multi-instance

learning and weight sharing which help to find the most

optimal canonical instance of the input images for training,

as well as reducing the redundancy in learned networks.

Nevertheless, with built-in data augmentation, TI-Pooling

requires significantly more training and testing cost than a

standard DCNN.

Spatial Transform Network. Representatively, the

spatial transformer network (STN) [20] introduces an ad-

ditional network module that can manipulate the feature

maps according to the transform matrix estimated with a

localisation sub-CNN. STN contributes a general frame-

work for spatial transform, but the problem about how to

precisely estimate the complex transform parameters by

CNN remains not being well-solved [14, 34]. In [21, 36],

the Convolutional Restricted Boltzmann Machine (C-RBM)

induces transformation-aware filters, i.e., it yields filters

that have a notion with which specific image transformation

they are used. From the view of group theory, Cohen et

al. [8] justified that the spatial transform of images could

be reflected in both feature maps and filters, providing a

theoretical foundation for our work. Most recent works
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Figure 2. An ARF F is clockwise rotated by θ to yield its rotated variant Fθ in two steps: coordinate rotation and orientation spin.

[43, 13] have tried rotating conventional filters to perform

rotation-invariant texture and image classification; however,

without upgrading conventional filters to multi-oriented

filters with orientation channels, their capability about cap-

turing hierarchical and fine-detailed orientation information

remains limited.

3. Oriented Response Networks

Oriented Response Networks (ORNs) are deep con-

volutional neural networks using Active Rotating Filters

(ARFs). An ARF is a filter that actively rotates dur-

ing convolution to produce a feature map with multiple

orientation channels. Thus, an ARF acts as a virtual

filter bank with only one filter being materialized and

learned. With ARFs, ORNs require significantly fewer

network parameters with negligible computation overhead

and enable explicitly hierarchical orientation information

encoding.

In what follows, we address three problems in adopting

ARFs in DCNN. First, we construct a two-step technique to

efficiently rotate an ARF based on the circular shift property

of Fourier Transform. Second, we describe convolutions

that use ARFs to produce feature maps with location and

orientation explicitly encoded. Third, we show how all

rotated versions of an ARF contribute to its learning during

the back-propagation update stage.

3.1. Active Rotating Filters

An Active Rotating Filter (ARF) is a filter of the size

W × W × N that actively rotates N − 1 times during

convolution to produce a feature map of N orientation

channels, Fig. 2. Therefore, an ARF F can be virtually

viewed as a bank of N filters (N×W×W×N ), where only

the canonical filterF itself is materialized and to be learned,

and the remaining N−1 filters are its unmaterialized copies.

The n-th filter in such a filter bank, n ∈ [1, N − 1], is

obtained by clockwise rotating F by 2πn
N

.

An ARF contains N orientation channels and is viewed

as N -directional points on a W × W grid. Each element

in an ARF F can be accessed with
−→
Fij

(n) where 0 ≤

|i|, |j| ≤ W−1
2 , 0 ≤ n ≤ N − 1, i, j, n ∈ N. An ARF F is

clockwise rotated by θ to yield its rotated variantFθ through

the following two steps, coordinate rotation and orientation

spin.

Coordinate Rotation. An ARF rotates around the

origin O, Fig. 2, and the point at (p, q) in Fθ is calcu-

lated from four neighbors around (p′, q′) in F , ( p′ q′ ) =

( p q )
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

, using bilinear interpolation

−−−→
F ′

θ,pq = (1− µ)(1− ω)
−−→
Fuv + (1− µ)ω

−−−−→
Fu,v+1

+ µ(1− ω)
−−−−→
Fu+1,v + µω

−−−−−−→
Fu+1,v+1,

(1)

where u = ⌊p′⌋, v = ⌊q′⌋, µ = p′ − u, ω = q′ − v. Note

that points outside the inscribed circle are padded with 0.

Orientation Spin. As discussed, an ARF can be viewed

as N -directional points on a grid. Each N -directional

point
−−−→
F ′

θ,pq is the N -points uniform sampling of a desired

oriented responseF ′
θ,pq(α), which is a continuous periodic

function of angle α with period 2π. After the coordinates

rotation, it still requires a clockwise spin by θ to yield
−−−→
Fθ,pq ,

which is, in fact, the quantization of F ′
θ,pq(α − θ), Fig. 2.

Therefore, such spin procedure can be efficiently tackled

in Fourier domain by using the circular shift property of

Discrete Fourier Transforms (DFT),

X(k) ≡ DFT{
−−−→
F ′

θ,pq
(n)}

=

N−1
∑

n=0

−−−→
F ′

θ,pq
(n)e−jk 2πn

N , k=0,1,...,N−1,
(2)

−−−→
Fθ,pq

(n) ≡ IDFT{X(k)e−jkθ}

=
1

N

N−1
∑

k=0

X(k)ejk(
2πn

N
−θ), n=0,1,...,N−1.

(3)

To smoothly process all rotation angles, ARFs require

a considerable amount of orientation channels. In practice,

thanks to the orientation ‘interpolation’ by multi-layer pool-

ing operations, we can use a limited amount of orientations
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to guarantee the accuracy. The successful practice of

DCNNs, e.g., VGG [37] and ResNet [18, 19], shows that

the stacks of multiple small filters are more expressive

and parameters-efficient than large filters. Moreover, when

using the combination of small filters and a limited number

of orientation channels, the computational complexity of ro-

tating ARF can be further reduced, since both the coordinate

rotation and the orientation spin can be calculated by the

circular shift operator and implemented via high-efficient

memory mapping under reasonable approximations. Take

a 3 × 3 × 8 ARF F̂ as an example, calculations of its θ

clockwise rotated version F̂θ are formulated as

−−−−→
F̂ ′

θ,〈i〉 =
−−−−−−−−−−−→
F̂ ′

〈(i−k) mod N〉, i∈I,
−→
F̂θ

(n) =
−→
F̂ ′

θ
((n−k) mod N), n=0,1,...,N−1,

(4)

where ∀k ∈ N, θ = k 2π
N
, N = 8 and I =

(

7 0 1
6 2
5 4 3

)

is a

mapping table that defines the index of each surrounding

element, which means
−−→
F̂〈0〉 ≡

−−→
F̂0,1,

−−→
F̂〈1〉 ≡

−−→
F̂1,1,

−−→
F̂〈2〉 ≡

−−→
F̂1,0,

−−→
F̂〈3〉 ≡

−−−→
F̂1,−1 and so on.

Given the above, we use 1 × 1 and 3 × 3 ARFs with 4
and 8 orientation channels in most experiments.

3.2. Oriented Response Convolution

An ARF actively rotates N −1 times during convolution

to produce a feature map of N orientation channels, and

such feature map explicitly encodes both location and

orientation information. As an ARF is defined as the size

W × W × N , both an ARF F and an N -channel feature

map M can be viewed as N -directional points on a grid.

With ARF, we define the Oriented Response Convolution

over F andM, denoted as M̃ = ORConv(F ,M). The

output feature map M̃ consists of N orientation channels

and the k-th channel is computed as

M̃(k) =

N−1
∑

n=0

F
(n)
θk
∗M(n), θk = k

2π

N
, k=0,...,N−1, (5)

where Fθk is the clockwise θk-rotated version of F , F
(n)
θk

and M(n) are the n-th orientation channel of Fθk and M
respectively.

According to (5), the k-th orientation channel of the

output feature map M̃ is generated by θk rotated versions

of the materialised ARF. It means that in each oriented

response convolution, the ARF proactively captures image

response in multiple directions and explicitly encodes its

location and orientation into a single feature map with

multiple orientation channels, visualized in Fig. 3. (5)

also demonstrates that each orientation channel of the ARF

contributes to the final convolutional response respectively,

endowing ORNs the capability of capturing richer and more

fine-detailed patterns than a regular CNN.

Figure 3. Example feature maps produced by one ARF at each

layer of an ORN trained on the rotated MNIST dataset, with digit

‘4’ in different rotations as the inputs (one network layer per

row, one input per column). The right-most column magnifies

sample regions in feature maps. It clearly shows that a feature

map explicitly encodes position and orientation. At the second

layer, an image is extended to an omnidirectional map to fit

ORConv. At the second-to-last (ORConv4) layer, deep features

are observed in similar values but in different orientations, which

demonstrates that orientation information is extracted by ORNs.

The last (ORAlign) layer performs SIFT-like alignment to enable

rotation-invariance (Best viewed zooming on screen).

3.3. Updating Filters

During the back-propagation, error signals δ(k) of all

rotated versions of the ARF are aligned to δ
(k)
−θk

using (1)

and (2), and aggregated to update the materialised ARF,

δ(k) =
∂L

∂Fθk

, θk = k
2π

N
, k=0,1,...,N−1,

F ← F − η

N−1
∑

0

δ
(k)
−θk

,

(6)

where L stands for training loss and η for learning rate.

An ARF acts as a virtual filter bank containing the ma-

terialized canonical filter itself and unmaterialised rotated

versions. According to (6), the back-propagation collec-

tively updates the materialised filter only, so that training

errors of appearance-like but orientation-distinct samples

are aggregated. In low-level layers, such collective updating
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31x31x16 ARF

Expand

Orientation Channels

Figure 4. A 31×31×16 ARF learned from a texture dataset. It is

shown in the N-directional points form (left) and further visualized

as one orientation channel per image (right). The ARF clearly

defines a texture pattern through a combination of multi-oriented

edges (Best viewed zooming on screen).

contributes more significantly, as in a single image there

exist many appearance-like but orientation-distinct patches

that can be exploited. The collective updating also helps

when only limited training samples are given. One example

of a collectively updated ARF is shown in Fig. 4.

3.4. Rotation Invariant Feature Encoding

Feature maps in ORNs are not rotation-invariant as

orientation information are encoded instead of being dis-

carded. When within-class rotation-invariance is required,

we introduce two strategies, ORAlign and ORPooling, at

the top layer of ORNs. For simplicity, we choose a DCNN

architecture, where the size of a feature map gradually

shrinks to 1 × 1 × N . N is the number of orientation

channels. Each feature map of the last ORConv layer has

a receptive field of image size and stands for the oriented

response of high-level representative patterns.

The first strategy is the ORAlign. Without loss of

generality, let us denote the i-th feature map of the last

ORConv layer as
−−−→
M̂{i} and each oriented response in it

as
−−−→
M̂{i}(n), 0 ≤ n ≤ N − 1.

−−−→
M̂{i} is an N dimension

tensor records the response from different directions, with

which we perform SIFT-like alignment to achieve rotation

robustness. This is done by first calculating the dominant

orientation (the orientation with the strongest response) as

D = argmax
d

−−−→
M̂{i}(d) and spin the feature by −D 2π

N
,

Fig. 3. The second strategy is the ORPooling, which is done

via simply pooling a
−−−→
M̂{i} to a scalar max(

−−−→
M̂{i}(j)), 0 <

j < N − 1. This strategy reduces the feature dimension but

loses feature arrangement information.

4. Experiments

ORNs are evaluated on three benchmarks. In Sec. 4.1,

experiments on the MNIST dataset [29] and its [0, 2π]
randomly rotated versions are conducted, showing the ad-

vantage of ORNs through encoding rotation-invariant fea-

tures, and reducing network parameters. ORNs are further

tested on a small sample set of [0, 2π] rotated MNIST

CNN

3x3 Conv, 80

3x3 Conv, 160

3x3 Conv, 320

3x3 Conv, 640

FC 1024

ReLU, Pool, /2

ReLU, Pool, /2
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FC 10

image
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ReLU, Pool, /2

ReLU, Pool, /2

ReLU, Pool, /2
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ORN

Extend

ORAlign/ORPooling

Dropout, 0.5

Figure 5. Comparison of network topologies.

[24] to validate its generalization ability on rotation. In

Sec. 4.2, on a weakly-supervised orientation estimate task,

the vast potential of directly taking advantage of the orien-

tation information extracted by ORNs is demonstrated. In

Sec. 4.3, we upgrade the VGG [37], ResNet [18], and the

WideResNet [44] to ORNs, and train them on CIFAR10 and

CIFAR100 [22], showing the state-of-the-art performance

on the natural image classification task.

4.1. Rotation Invariance

Rotated MNIST. We randomly rotate each sample in the

MNIST dataset [29] between [0, 2π] to yield MNIST-rot. To

assess the effect of data augmentation on different models,

we further rotate each sample in the MNIST-rot training set

to eight directions with 45-degree intervals, which means

that the training set is augmented eightfold. The augmented

data set is identified as MNIST-rot+.

We set up a baseline CNN with four convolutional layers

and multiple 3x3 filters, Fig. 5. With the baseline CNN,

we generate different ORNs, as well as configuring the

STNs [20] and the TI-Pooling network [23] for comparison.

STNs are created by inserting a Spatial Transformer with

affine or rotation transform to the entry of the baseline

CNN. TIPooling network is constructed by duplicating the

baseline CNN eight times to capture different augmented

rotated versions of inputs, and a transform-invariant pooling

layer before the output layer. ORNs are built by upgrading

each convolution layer in the baseline CNN to Oriented

Response Convolution layer using Active Rotating Filters

(ARFs) with 4 or 8 orientation channels. Considering that
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Method time(s) params(%) original(%) rot(%) rot+(%) original→ rot(%)

Baseline CNN 16.4 100.00 0.73 2.82 2.19 56.28

STN(affine)[20] 18.5 100.40 0.61 2.52 1.82 56.44

STN(rotation)[20] 18.7 100.39 0.66 2.88 1.93 55.59

TIPooling(x8)[23] 126.7 100.00 0.97† not permitted 1.26 not permitted

ORN-4(None) 7.9 15.91 0.63 1.88 1.55 59.67

ORN-4(ORPooling) 8 7.95 0.59 1.84 1.33 27.74

ORN-4(ORAlign) 8.1 15.91 0.57 1.69 1.34 27.92

ORN-8(None) 17.5 31.41 0.79 1.57 1.33 58.98

ORN-8(ORPooling) 17.9 12.87 0.66 1.37 1.21 16.67

ORN-8(ORAlign) 17.8 31.41 0.59 1.42 1.12 16.21

Table 1. Results on the MNIST variants. The second column describes the average training time of an epoch on the original training

set (with a NVIDIA Tesla K80 GPU). The third column describes the percentage of parameters of each model about the baseline CNN.

The fourth to sixth columns describe the error rates on the original, the rot, and the rot+ datasets. The last column describes the error

rates achieved on the rot testing set (with random rotation) by models trained on the original training set (without rotation). TIPooling

requires augmented data; thus some experiments are not permitted. The error rate of TIPooling on the original MNIST dataset is under

augmentation, with the superscript † to show its difference with others.

(a) CNN (b) STN(affine)

(c) ORN-8(None) (d) ORN-8(ORAlign)

Figure 6. Visualization of features in cross-generalization evalua-

tion, corresponding to the last column of Tab. 1.

ARFs are more expressive than conventional filters, the

number of ARFs in each layer is decreased to one-eighth

of those in the baseline. Corresponding to the strategies

proposed in Sec. 3.4, we use ORAlign, ORPooling or none

of them to encode rotation-invariant features. The network

topologies are shown in Fig. 5.

In network training, we use the same hyper-parameters

as TI-Pooling [23], i.e., 200 training epochs using the

turning-free convergent adadelta algorithm [45], 128 batch

size, and 0.5 dropout rate for the fully-connected layer. For

each dataset, we randomly selected 10,000 samples from

the training set for validation and the remaining 50,000

samples for training. The best model selected by 5-fold

cross-validation is then applied to the test set, and the final

results are presented in Tab. 1.

The second column of Tab. 1 shows that ORN keeps high

training efficiency. The ORN-4 (4 orientation channels)

uses only 50% training time while ORN-8 uses similar

training time with the baseline CNN. In contrast, TIPooling

increases the time by about eight times as each sample

is augmented to 8 orientations. From the third to the

last column of Tab. 1, it can be seen that ORNs can use

significantly fewer network parameters (7.95%-31.4%) to

consistently improve the performance. Even on the original

dataset without sample rotations, it achieves 22% error rate

decrease (0.57% vs 0.73%), as the digit curvatures are well

modeled by ORN. Compared with the data augmentation

strategy (baseline CNN on rot+), ORN (on rot) not only

reduces network parameters and training cost but also

achieves significant lower error rate (1.37% vs 2.19%).

Tab. 1 also shows that different rotation-invariant en-

coding strategies have different advantages. ORPooling

can further compress the feature dimension and network

parameters, while ORAlign retains the complete feature

structure thus achieves higher performance. Even without

rotation-invariant encoding, ORNs outperforms the baseline

on the rot and rot+, because ARFs can explicitly capture

the response in different directions so that a pattern and

its rotated versions can be encoded in the same feature

map with orientation channels, Fig. 3. It also can be seen

in Fig. 6(c) that the t-SNE [41] 2D mapping of features

produced by ORN-8(None) constitutes clear clusters.

In Tab. 1, the state-of-the-art spatial transform network,

STN, has minor improvement on the rot while slightly

increasing the number of parameters. The visualization of

calibrated images shows that it often outputs wrong trans-

form parameters. This validates our previous viewpoint:

the conventional CNN used in STN lacks the capability to

precisely estimate rotation parameters. In Sec. 4.2, we will

show that ORN can better solve such a problem.

The last column of Tab. 1 presents the results of cross-

generalization evaluation that trains models on the MNIST-

original and tests them on the MNIST-rot. ORNs show

impressing performance with 71% improvement over the
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Method Error(%)

ScatNet-2 [3] 7.48

PCANet-2 [4] 7.37

TIRBM [39] 4.2

CNN 4.34

ORN-8(ORAlign) 2.25

TIPooling(with augmentation) [23] 1.93

OR-TIPooling(with augmentation) 1.54

Table 2. Classification error rates on the MNIST-rot-12k.

(a) CNN (b) STN(affine) (c) ORN-8(ORAlign)

Figure 7. Visualization of features encoding of digit class ‘6’

and ‘9’ from MNIST-rot. Each point (r, θ) corresponds to a

sample where radius r is the 1-D tSNE feature mapping, and θ

is the angle of the sample. ORN-8(ORAlign) produces within-

class rotation-invariant deep features while maintaining inter-class

discrimination. (Best viewed in color.)

baseline. Fig. 6(d) shows that ORN-8(ORAlign) produces

much clearer feature distribution in manifold than other

networks.

An interesting experiment comes from the digit class ‘6’

and ‘9’. It can be seen in Fig. 7 that both CNN and STN

have large within-class differences as the same digit with

different angles produce various radii. Moreover, features

generated by CNN and STN have apparently 180o symmet-

rical distribution, which means that they can barely tell the

difference between upside-down 6 and 9. In contrast, ORN-

8(ORAlign) generates within-class rotation-invariant deep

features, while maintaining inter-class discrimination.

Rotated Small Sample Set. A smaller dataset can better

test the generalization capability of a learning model. We

consider the MNIST-rot-12k dataset [24] which contains

12,000 training samples and 50,000 test samples from the

MNIST-rot dataset. Among them, 2000 training samples are

used as the validation set and the remaining 10,000 samples

as the training set.

In the dataset, we test the ORN-8 model that uses 8-

orientation ARFs and an ORAlign operator. We also test the

OR-TIPooling network, which is constructed by upgrading

its parallel CNNs to ORN-8(None)s. The reason why we do

not use ORAlign or ORPooling is that TIPooling itself has

the invariant encoding operator. Tab. 2 shows that ORN can

decrease the state-of-the-art error rate from 4.2% to 2.25%

using only 31% network parameters of the baseline CNN.

Combined with TIPooling, ORN further decreases the er-

ror rate to 1.54%, achieving state-of-the-art performance,

Method Std Error(%)

STN [20] 0.745 3.38

OR-STN(ORAlign) 0.749 3.61

OR-STN 0.397 2.43

Table 3. Orientation estimation performance. The second column

describes the standard deviation of calibrated orientations and the

third column describes the classification error rates.

(a) Input (b) STN(affine) (c) OR-STN(ORAlign) (d) OR-STN

Figure 8. Orientation estimation. (a) is a mini-batch of samples

from MNIST-half-rot and (b)-(d) are their rotation-rectified results.

which shows that ORNs have good generalization capability

for such reduced training sample cases.

4.2. Orientation Estimation

ORN is evaluated on the weakly image orientation esti-

mation problem, using the STN [20] as the baseline. The

training images have only class labels but lack orientation

annotation, which is estimated during learning. We upgrade

the localisation sub-network of STN from a conventional

CNN to ORN by converting Conv layers to ORConv layers

which use ARFs with eight orientation channels. The

STN model is simplified to process rotation only, which

means that its localisation network estimates only a rotation

parameter.

STN, OR-STN and OR-STN(ORAlign) are trained on

the MNIST-half-rot dataset which is built by randomly rotat-

ing each sample in the MNIST dataset in the range [−π
2 ,

π
2 ]

(half the circle). All the networks use hyper-parameters

as Sec. 4.1 and are trained by only 80 epochs to make

the localisation sub-network converge. The orientation

estimation results are presented in Tab. 3, the rotation-

rectified images are shown in Fig. 8, and angle statistics

of rotation-rectified images are shown in Fig. 9. It can

be seen in Fig. 8(b) that STN cannot effectively handle

the large-angle rotation problem, because the localisation

sub-network itself is a conventional CNN, lacking the

ability to explicitly process significant rotation. When

upgrading the localisation network of STN to ORN (without

ORAlign), it can be seen in Fig. 8(d) that most digit

orientations are correctly estimated. In Fig. 9(b), it can

be seen that the OR-STN(ORAlign) performs even worse

than the baseline on orientation estimation, because after

the feature alignment, features become rotation-invariant

and thus lose orientation information. Tab. 3 shows that

upgrading localisation sub-network to ORN significantly

improves the performance. Such experiments validate

that the ARFs can capture the orientation information of
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(a) STN (b) OR-STN(ORAlign) (c) OR-STN

Figure 9. Distributions of samples’ orientations after rotation-rectification.

Method depth-k params CIFAR10(%) CIFAR100(%)

NIN [28] - - 8.81 35.67

DSN [27] - - 8.22 34.57

Highway [40] - - 7.72 32.39

ELU [7] - - 6.55 24.28

VGG [37] 16 20.1M 6.32 28.49

OR-VGG 16- 1
2

10.1M 5.47 27.03

ResNet [18] 110 1.7M 6.43 25.16

OR-ResNet 110- 1
2

0.9M 5.31 -

pre-act-ResNet[19]

110 1.1M 6.37 -

164 1.7M 5.46 24.33

1001 10.3M 4.92 22.71

WideResNet[44]

40-4 8.7M 4.97 22.89

16-8 11.0M 4.81 22.07

28-10 36.5M 4.17 20.50

OR-WideResNet

40- 1
2

1.1M 5.43 -

40-2 4.4M 4.13 21.24

40-5 10.2M 4.12 20.70

28-5 18.4M 3.52 19.22

Table 4. Results on the natural image classification benchmark.

In the second column, k is the widening factor corresponding to

the number of filters in each layer.

discriminative patterns and explicitly encode them into

feature maps with orientation channels, which are effective

for image orientation estimation.

4.3. Natural Image Classification

Although most objects in natural scene images are up-

right, rotations could exist in small and/or medium scales

(from edges to object parts). It is interesting to validate

whether ORNs are effective to handle such partial object

rotation or not. CIFAR-10 and CIFAR-100 datasets [22]

consist of 32x32 real-world object images drawn from

10 and 100 classes split into 50,000 training and 10,000

testing images. Three DCNNs including VGG [37], ResNet

[18] and WideResNet [44], are used as baselines on these

datasets. Promoting the baselines to ORNs is done by con-

verting each Conv layer to an ORConv layer that uses ARFs

with eight orientation channels, and using an additional

ORAlign layer to encode rotation invariant representations.

Following the settings of WideResNet [44], image clas-

sification results, Tab. 4, show that ORNs consistently

improved baselines with much fewer parameters. For

example, OR-VGG uses about 50% parameters of the

baseline to achieve better results. OR-WideResNet-40-

frog

bird

deer

31.4%

30.7%

27.3%

Figure 10. Sample images that contain rotated objects/parts falsely

classified by the ResNet but correctly recognized by the proposed

ORNs in CIFAR10.

2 uses only 12% parameters (4.4M vs 36.5M) to outper-

form the state-of-the-art WideResNet-28-10 on CIFAR10.

OR-WideResNet-28-5 uses about 50% parameters of the

baselines yet significantly improve the state-of-the-arts on

both CIFAR10 and CIFAR100. The top-3 improved classes

of CIFAR10 are frog (31% higher than baseline ResNet),

bird (30.7%) and deer (27.3%), which happen to involve

significant local and/or global rotations, Fig. 10. This

further demonstrates the capability of ORN to process local

and global image rotations.

5. Conclusions

In this paper, we proposed a simple but effective strategy

to explicitly encode hierarchical orientation information of

discriminative patterns and handle the global/local rotation

problem. The primary contribution is designing Active

Rotating Filters (ARFs), as well as upgrading the state-

of-the-art DCNN architectures, e.g., VGG, ResNet, STN,

and TI-Pooling, to Oriented Response Networks (ORNs).

Experimentally, ORNs outperform the baseline DCNNs

while using significantly fewer (12%-50%) network param-

eters, which indicates that the usage of model-level rotation

prior is a key factor in training compact and effective deep

networks.
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