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Abstract

Person re-identification (Re-ID) remains a challenging

problem due to significant appearance changes caused by

variations in view angle, background clutter, illumination

condition and mutual occlusion. To address these issues,

conventional methods usually focus on proposing robust

feature representation or learning metric transformation

based on pairwise similarity, using Fisher-type criterion.

The recent development in deep learning based approach-

es address the two processes in a joint fashion and have

achieved promising progress. One of the key issues for deep

learning based person Re-ID is the selection of proper sim-

ilarity comparison criteria, and the performance of learned

features using existing criterion based on pairwise similar-

ity is still limited, because only Point to Point (P2P) dis-

tances are mostly considered. In this paper, we present a

novel person Re-ID method based on Point to Set similar-

ity comparison. The Point to Set (P2S) metric can jointly

minimize the intra-class distance and maximize the inter-

class distance, while back-propagating the gradient to op-

timize parameters of the deep model. By utilizing our pro-

posed P2S metric, the learned deep model can effectively

distinguish different persons by learning discriminative and

stable feature representations. Comprehensive experimen-

tal evaluations on 3DPeS, CUHK01, PRID2011 and Mar-

ket1501 datasets demonstrate the advantages of our method

over the state-of-the-art approaches.

1. Introduction

Given one single shot or multiple shots of a pedestri-

an from one camera view, person re-identification (Re-ID)

aims to match the same person amongst a set of gallery can-

didates captured from the disjoint camera networks. It is

an important task to many surveillance applications such as

person association [25], multi-target tracking [39] and be-

havior analysis [14]. The problem is also very challeng-

ing, because the typical setup of video surveillance system

in unconstrained environments usually generates significan-

t appearance changes due to the variations in view angel,

(a) low resolution (b) complex background

(c) mutual occlusion (d) angle variation

Figure 1. The challenges to person re-identification problem in

public space, where the query image in the probe set is denoted

in green box and the matched images in the gallery set are shown

in black box.

background clutter, illumination condition and mutual oc-

clusion, as shown in Fig. 1. Therefore, a discriminative

and stable feature representation should be learned to dis-

tinguish different individuals for person Re-ID, in which the

intra-class distance is smaller than the inter-class ones.

To address these challenges, extensive works have been

reported in the past few years, which could be rough-

ly divided into two categories: 1) developing robust de-

scriptor to handle the variations in persons’ appearance,

and 2) designing effective distance metric to measure the

similarity between persons’ images. For the first catego-

ry, different cues are employed for discriminative and sta-

ble feature extraction, and representative descriptors in-

clude the Local Binary Pattern (LBP) [35], Ensemble of

Local Feature (ELF) [10] and Local Maximal Occurrence

(LOMO) [41]. For the second category, labeled images

are used to learn a distinctive distance metric, and popular

metric learning methods include the Locally Adaptive De-

cision Function (LADF) [19], Large Margin Nearest Neigh-

bor (LMNN) [32], Information Theoretic Metric Learning

(ITML) [6], etc. Since both line of works regard feature ex-

traction and metric learning processes as two disjoint steps,

their performances are limited.

Recently, the deep learning based methods have been
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proved to be effective for person Re-ID [1, 7, 23], because

they can incorporate feature extraction and metric learning

into an integrated framework, in which the two processes

are implemented as two connected components: 1) a Deep

Neural Network (DNN) to extract features from pedestrian

images, and 2) a distance metric to compute the loss and

back-propagate the gradients. Benefit from the powerful

representation capability of the DNN, these methods have

achieved the state-of-the-art performance on the benchmark

datasets for person Re-ID [31, 34].

Despite the great success of these deep learning based

methods achieved in person Re-ID, insufficient labeled

training data has limited their generalization ability of

learned models for the testing data, while collecting the

training samples is quite labor intensive. Even though the

triplet loss function [7] could effectively alleviate this prob-

lem by sampling a large set of anchor-positive-negative

triplets, it is still based on the P2P distance such that the

ranking performance of learned feature is still limited. In

this paper, we propose a novel Point to Set distance met-

ric to supervise a designed deep Convolutional Neural Net-

work (CNN) to learn discriminative and stable feature rep-

resentations for person Re-ID. In order to learn the feature

representations from multiple perspectives, we construct an

effective part-based deep CNN to extract discriminative fea-

tures from different body parts of each person. The pro-

posed framework is generic where different deep models,

such as the AlexNet [16], VGGNet [30] or ResNet [11],

could also be applied to extract feature representations from

the input images. As a general loss, our proposed P2S met-

ric can jointly minimize the intra-class distance and max-

imize the inter-class distance, while back-propagating the

gradients to optimize parameters of the deep model. As

demonstrated in our experiments, a large margin is held be-

tween the intra-class distance and inter-class distance in the

learned feature space, such that its performance in differ-

entiating the intra/inter-class person is superior than many

state-of-the-art methods.

The main contributions of this work can be highlight-

ed as follows: 1) A novel P2S distance metric is proposed

to supervise a deep model to learn discriminative and sta-

ble feature representations for similarity comparison, which

can penalize a large margin between the positive pairs and

negative pairs in the learned feature space. Compared with

the existing P2P distance based metrics, our method con-

siders the P2S information and is more effective at improv-

ing the ranking performance; 2) An effective part-based

deep CNN is constructed to extract discriminative and sta-

ble feature representations of different body parts for per-

son Re-ID. The deep architecture is constituted of a global

sub-network, a local sub-network and a fusion sub-network,

such that different body parts are first discriminately learned

in the global sub-network and local sub-network, and then

fused in the fusion sub-network. Extensive experiments

are conducted on several public benchmark datasets includ-

ing 3DPeS, CUHK01, PRID2011 and Market1501, which

show clear improvement of our method as compared with

the state-of-the-art approaches.

2. Related Work

Extensive works have been reported to tackle the person

Re-ID problem. These methods mainly focus on several dif-

ferent aspects of the issue such as developing robust feature

descriptors, designing discriminative metrics and learning

deep features. Blew we give a brief review of some repre-

sentative ones.

Feature Designing Method The feature designing

methods mainly focus on developing discriminative person

representation which is robust to the cross view appearance

variations. For examples, Zhao et al. [41] learned a mid-

level filter from patch cluster to achieve cross view invari-

ance. In [20], Liao et al. constructed a feature descriptor

which analyzed the horizontal occurrence of local features

and maximized the occurrence to make a stable represen-

tation against viewpoint changes. Ma et al. [22] present-

ed the person image via covariance descriptor which was

robust to illumination changes and background variations.

In [8], Farenzena et al. augmented maximally stable color

regions with histograms for person representation. Zhao et

al. [40] learned the distinct salience feature to distinguish

the matched person from others. In [5], Chen et al. em-

ployed a pre-learned pictorial structure model to localize

the body parts more accurately. Wu et al. [33] introduced

a viewpoint-invariant descriptor, which took the viewpoint

of the human into account by using what they called a pose

prior learned from the training data. In [15], Kviatkovsky

et al. investigated the intra-distribution structure of color

descriptor, which was invariant under certain illumination

changes. Li et al. [17] matched person images observed in

different camera views with complex cross-view transforms

and applied it to person Re-ID.

Metric Learning Method The metric learning method-

s aim to find a mapping function from the feature space

to another distance space where feature vectors from the

same person are more similar than those from differen-

t ones. For instance, Zheng et al. [43] proposed a relative

distance learning method from a probabilistic prospective.

In [24], Mignon et al. learned a distance metric from s-

parse pairwise similarity constraints. Pedagadi et al. [28]

utilized LADF to map the high dimensional features into a

more discriminative low dimensional space. In [35], Xiong

et al. further extended the LADF and several other metric

learning methods by using kernel tricks and different regu-

larizers. Nguyen et al. [26] measured the similarity of face

pairs through cosine similarity, which was closely related to

the inner product similarity. In [21], Loy et al. casted the
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Figure 2. Illustration of the proposed P2S method, in which (a) shows the gradient flows of the conventional triplet formulation [7] and

the proposed symmetric triplet formulation; (b) shows the two corresponding motion trajectories driven by the two gradient flows; (c)

illustrates the changes of intra-class distances, inter-class distances and relative distances of the two triplet formulations with respect to

iteration; (d) illustrates the initial distributions of samples in a mini-batch; (e) plots only the adaptively selected positive and negative

samples; (f) shows the flow of distributions based on the proposed symmetric triplet formulation; and (g) shows the final distributions.

person Re-ID problem as an image retrieval task by con-

sidering the listwise similarity. Chen et al. [4] proposed a

kernel based metric learning method to explore the nonlin-

earity relationship of samples in the feature space. In [13],

Hirzer et al. learned a discriminative metric by using re-

laxed pairwise constraints. Prosser et al. developed [29] a

ranking model using support vector machine.

Deep Learning Method As explained before, the deep

learning based methods aim to incorporate the two into an

integrated framework, in which adaptive feature representa-

tion can be learned under the supervision of distance metric.

For example, Li et al. [18] proposed a novel filter pairing

neural network to model body part displacements by using

the patch matching layers to match the filter responses of

local patches across views. In [1], Ahmed et al. proposed

an improved deep learning framework which took pairwise

images as inputs, and outputs a similarity value indicating

whether the two input images depict the same person or not.

Xiao et al. [34] proposed a domain guided dropout algorith-

m to improve the performance of deep CNN to extract ro-

bust feature representation for person Re-ID. In [36], Yi et

al. constructed a siamese neural network to learn pairwise

similarity, and used body parts to train the model. Ding et

al. [7] applied the triplet loss to train the triplet deep frame-

work for person Re-ID. In [31], Wang et al. proposed a u-

nified triplet and siamese deep architecture which can joint-

ly extract single-image and cross-image feature representa-

tions. Zhou et al. [44] propose an adaptive margin method

to learn the deep features for person Re-ID in a siamese

framework.

3. The Point to Set Model

Let X = {Xi}
N
i=1 be the input set of training samples,

where Xi = {x
i,a
A ,x

i,j
B }

M
j=1 denotes the pairwise set of the

ith raw input data, N is the number of training identities,

and M is the number of training images belonging to the

ith identity. The goal of our deep architecture is to learn

filter weights and biases that minimizes the ranking error

from the output layer. A recursive function for an K-layer

deep model can be formulated as follows:

X
k
i = Ψ(Wk ∗Xk−1

i + b
k)

i = 1, · · · ,N ; k = 1, · · · ,K;Xi(0) = Xi , (1)

where W
k denotes the filter weights of the kth layer, bk

refers to the corresponding biases, ∗ denotes the convolu-

tion operation, Ψ(·) is an element-wise non-linear activation

function such as ReLU, and X
k
i represents the feature maps

generated at layer k for sample Xi. For similarity, we sim-

plify the parameters of the neural network as a whole and

define W = {W1, · · · ,WK} and b = {b1, · · · ,bK}.
The next sections depict our proposed metric.

3.1. The Point to Set Metric

The P2S metric is consisted of three terms, namely the

pairwise term, the triplet term and the regularizer term,

which can be formulated as follows:

L = LP(X,W,b) + αLT(X,W,b) + βR(W,b) , (2)

where LP is the pairwise term, LT denotes the triplet ter-

m, R represents the regularizer term, and α, β are two con-

stant weight parameters. Given an anchor sample, the pair-

wise term randomly selects positive and negative candidates

to alleviate the overfitting problem, while the triplet term

adaptively chooses the marginal samples to boost the rank-

ing performance, and the regularizer term smoothes the pa-

rameters to preserve the numerical stability. These terms

are elaborated in the next paragraphs.

The pairwise term To alleviate the overfitting problem,

the pairwise term randomizes the selection of positive pairs

and negative pairs to train the deep model. Specially, the
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pairwise term aims to penalize when the positive distances

are greater than a preset down-margin and the negative dis-

tances are smaller than a preset upper-margin. The hinge

loss of the pairwise term can be formulated as follows:

LP=
1

Zp

N
∑

i,j=1

M
∑

r=1

max{Cp−G
a
i,j(Mp−‖x

i,a
A −x

j,r
B ‖

2
2), 0} ,

(3)

where Zp is the normalization factor, the two parameters

Mp > Cp are used to define the down-margin and upper-

margin, respectively. Specifically,Mp − Cp represents the

down-margin, andMp + Cp denotes the up-margin. Given

the ith and jth identities, the indicator matrix Ga
i,j refers

to the correspondence of the rth image in camera B to the

anchor image in camera A, which is defined as follows:

Ga
i,j =

{

+1, if i = j, and r ≤M ,

−1, if i 6= j, and r ≤M ,
(4)

where Ga
i,j is in size of N ×M , and Ga

i,j(j, r) = 1 means

that the rth image of the jth identity is referred to the same

person to that of the anchor image of the ith identity, while

Ga
i,j(j, r) = −1 means the opposite.

Definition-Symmetric Triplet:1 Given a set of triplet

training samples {xi,a
A ,x

i,p
B ,x

i,n
B }

N
i=1, in which {xi,a

A ,x
i,p
B }

is a positive pair and {xi,a
A ,x

i,n
B } denotes a negative pair,

the conventional triplet formulation penalizes a large rela-

tive margin ‖xi,a
A −x

i,n
B ‖

2
2−‖x

i,a
A −x

i,p
B ‖

2
2 ≥M by using

the loss L =
∑N

i=1 max{M + ‖xi,a
A − x

i,p
B ‖

2
2 − ‖x

i,a
A −

x
i,n
B ‖

2
2, 0}. In our symmetric triplet formulation, we satisfy

the above constraint by using the loss L =
∑N

i=1 max{M+

‖xi,a
A − x

i,p
B ‖

2
2 − [µ‖xi,a

A − x
i,n
B ‖

2
2 + ν‖xi,p

B − x
i,n
B ‖

2
2], 0},

where the first term denotes the intra-class distance, the sec-

ond term and the third term are weighted to represent the

inter-class distance, and µ, ν are two adaptive weights.

The triplet term The triplet term aims to improve the

ranking performance by maximizing the relative distance

between anchor to positive set and anchor to negative set.

As illustrated in Fig. 2, we formulate the point to set dis-

tance as the average distance between anchor and marginal

set samples, in which the anchor to negative set distance

should also satisfy ‖xi,a
A − x

j,r
B ‖

2
2 < ‖xi,a

A − x
k,s
B ‖

2
2, where

i = j, i 6= k and r, s ≤ M . Therefore by formulating the

relative point to set distance in the novel symmetric triplet

formulation, the hinge loss of the triplet term can be defined

as follows:

LT =
1

Zt

N
∑

i,j,k=1

M
∑

r,s=1

max{Mt−T(x
i,a
A ,x

j,r
B ,x

k,s
B ), 0} , (5)

1As shown in Fig. 2, the symmetric triplet formulation outperforms the

conventional one by optimizing the gradient directions for the positive and

the negative samples.

where Zt is the normalization factor,Mt denotes the rela-

tive margin parameter, and T(·) represents the relative point

to set distance:

T=Pa
i,j‖x

i,a
A −x

j,r
B ‖

2
2−N

a
i,k[µ‖x

i,a
A −x

k,s
B ‖

2
2+ν‖xj,r

B −x
k,s
B ‖

2
2] ,

(6)

where Pa
i,j ,N

a
i,j denote the positive and negative indicator

matrixes, and µ, ν are two adaptive weight parameters. Giv-

en the triplet identity {i, j, k}, the indicator matrixes Pa
i,j

and Na
i,k represent the matched and unmatched candidates

of the rth and sth image in camera B to the anchor image

in camera A, respectively. They are defined as follows:

Pa
i,j =

{

1, if i = j, and r = τp(a) ,
0, else ,

(7)

Na
i,k =

{

1, if i 6= k, and s = τn(a) ,
0, else ,

(8)

where Pa
i,j and Na

i,k are both in size of N × M , and

Pa
i,j(j, r) = 1 means that the rth image of the jth iden-

tity is referred to the same person to that of the anchor im-

age of the ith identity, Na
i,k(j, s) = 1 means that the sth

image of the kth identity is referred to the different per-

son to that of the anchor image of the ith identity, while

Pa
i,j(j, r) = 0 and Na

i,k(j, s) = 0 mean the opposite. The

positive and negative marginal samples are represented by

τp(a) and τn(a), and both of them can be collected by using

the nearest neighbor search algorithm.

The regularizer term To smooth the parameters of the

entire neural network, we define the following regularizer

term:

R =

K
∑

k=1

‖Wk‖2F + ‖bk‖22 , (9)

where ‖ · ‖2F denotes the Frobenius norm, and ‖ · ‖22 repre-

sents the Euclidian norm.

3.2. Deep Architecture

The proposed P2S metric is combined with our proposed

part-based deep CNN to implement an end-to-end frame-

work for both feature learning and fusion. As shown in

Fig. 3, the proposed deep architecture is consisted of three

sub-networks: global sub-network, local sub-network and

fusion sub-network. The following paragraphs explain the

respective networks in more detail.

Global sub-network The first part of our network is a

global sub-network, which is consisted of a convolution-

al layer and max pooling layer. They are used to extrac-

t the low-level features of the input images, so as to pro-

vide multi-level feature representations to be discriminately

learned in the following local sub-network. The input im-

ages are in size of 230×80×3, and are firstly passed through
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Figure 3. The deep feature learning and fusion neural network. This architecture is comprised of three sub-networks: global sub-network,

local sub-network and fusion sub-network. The first two part extract the global feature representations and the local feature representations

from person images by using convolutional layer, max-pooling layer and part generation strategy. The third part learns and fuses the local

feature representations from the second part by using fully connected layers. Finally, the concated feature representations are fed into the

P2S loss layer for similarity comparison.

64 learned filters of size 7×7×3. Then, these feature map-

s are passed through a rectified linear unit (ReLU). Finally,

the resulting feature maps are passed through a max pooling

kernel of size 3× 3× 3 with stride 3.

Local sub-network The second part of our network is a

local sub-network, which is consisted of four teams of con-

volutional layers and max pooling layers. We firstly divide

the input feature maps into four equal horizontal patches

across the height channel, which introduces 4 × 64 local

feature maps of different body parts. Then, we pass each

local feature maps through two convolutional layers, and

both of them have 32 learned filters of size 3 × 3. What’s

more, the outputs of the first local convolutional layer are

summarized with the outputs of the second local convolu-

tional layer using eltwise operation. Afterwards, we add a

rectified linear unit (ReLU) after them. Finally, the result-

ing feature maps are passed through max pooling kernels of

size 3 × 3 with stride 1. In order to learn the feature repre-

sentations of different body parts discriminately, we do not

share the parameters among the four teams of convolutional

layers.

Fusion sub-network The third part of our network is

a fusion sub-network, which is consisted of four teams of

fully connected layers. Firstly, the local feature maps of d-

ifferent body parts are discriminately learned by following

two fully connected layers in each team. The dimension

of the fully connected layer is 100 and a rectified linear u-

nit (ReLU) is added between them. Then, the discriminate-

ly learned local feature representations of the first four fully

connected layers are concated to be summarized by adding

another fully connected layers, whose dimension is 400. Fi-

nally, the resulting feature representation is further concated

with the outputs of the second four fully connected layer-

s to generate 800 dimensional final feature representations.

Similarly, we do not share the parameters among the four

fully connected layers to keep the discriminative of feature

representations of different body parts.

3.3. Optimization

We use the momentum method to update the adaptive

weights, and the gradient back-propagation method to op-

timize the parameters of the deep CNN. Both of them are

carried out in a mini-batch pattern. To proceed, we first cal-

culate the gradients of the loss function with respect to both

the adaptive weight parameters and the feature representa-

tion parameters of the corresponding layer. For simplicity,

we consider the parameters in the network as a whole by

defining Ω
k = [Wk,bk], and Ω = {Ω1, . . . ,ΩK}.

The weight parameters µ, ν can be adaptively learned in

the training process by using the momentum method. In

order to simplify the problem, we define µ = ξ + ϑ and

ν = ξ − ϑ, therefore they can be updated by only updating

ϑ. The partial derivative of the triplet term with respect to ϑ

can be formulated as follows:

t =

{

∂T(xi,a
A

,x
j,r
B

,x
k,s
B

)

∂ϑ
, if T > 0 ,

0 , else ,
(10)

where T =Mt + T(xi,a
A ,x

j,r
B ,x

k,s
B ), and ∂T

∂ϑ
can be com-

puted as follows:

∂T

∂ϑ
= 2Na

i,k[‖x
i,a
A − x

k,s
B ‖

2
2 − ‖x

j,r
B − x

k,s
B ‖

2
2] , (11)
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Then ϑ can be updated as follows:

ϑ = ϑ− η · t , (12)

where η is the updating rate. It can be clearly seen that when

‖xi,a
A −x

k,s
B ‖

2
2 > ‖xj,r

B −x
k,s
B ‖

2
2, namely t < 0, then µ will

be decreased while ν will be increased; and vice verse. As

a result, the strength of back-propagation to each sample in

the same triplet unit will be adaptively tuned, in which the

anchor and the positive will be clustered, and the negative

one will be far away from the hyper-line expanded by the

anchor and the positive.

In order to employ the back-propagation algorithm to

optimize the network parameters, we compute the partial

derivative of the loss function as follows:

∂L

∂Ω
=

N
∑

i=1

LP (Xi,Ω)+αLT (Xi,Ω)+2β
K
∑

k=1

Ω
k , (13)

where the first term represents the gradient of the pairwise

term, the second term denotes the gradient of the triplet ter-

m, and the third term is the gradient of the regularizer term.

For simplicity, we define P = Cp −Ga
i,j(Mp − ‖x

i,a
A −

x
j,r
B ‖

2
2), then the gradient back-propagation of the pairwise

term can be formulated as follows:

LP =

{

∂P(xi,a
A

,x
j,r
B

)

∂Ω
, if P > 0 ,

0 , else ,
(14)

where ∂P
∂Ω

is defined as follows:

∂P

∂Ω
=

1

Zp

N
∑

j=1

M
∑

k=1

2Ga
i,j(x

i,a
A −x

j,r
B )·

∂x
i,a
A − ∂x

j,r
B

∂Ω
. (15)

By the definition of T (xi,a
A ,x

j,r
B ,x

k,s
B ) in Eq. (10), we

derive the gradient back-propagation of the triplet term as

follows:

LT =

{

∂T(xi,a
A

,x
j,r
B

,x
k,s
B

)

∂Ω
, if T > 0 ,

0 , else ,
(16)

where ∂T
∂Ω

is defined as follows:

∂T

∂Ω
=

1

Zt

N
∑

j,k=1

M
∑

r,s=1

2Pa
i,j(x

i,a
A −x

j,r
B ) ·

∂x
i,a
A −∂x

j,r
B

∂Ω

−2µNa
i,k(x

i,a
A −x

k,s
B ) ·

∂x
i,a
A −∂x

k,s
B

∂Ω

−2νNa
i,k(x

j,r
B −x

k,s
B ) ·

∂x
j,r
B −∂x

k,s
B

∂Ω
.

(17)

From the above derivations, it is clear that the gradi-

ents of both the pairwise term and the triplet term can be

easily calculated given the values of x
i,a
A ,x

j,r
B ,x

k,s
B and

Algorithm 1 The P2S gradient descent algorithm

Input: Training samples X, learning rate ω, maximum

iterations H , weight parameters α and β, initialization

to weight parameters µ and ν, updating rate η, margin

parameters Cp,Mp andMt.

Output: The network parameters Ω.

repeat

1. Calculate the output feature representations of

x
i,a
A ,x

j,r
B and x

k,s
B in both the pairwise term and triplet

term in a mini-batch by forward propagation.

repeat

a) Update the weight parameters µ and ν according

to Eq. (10), Eq. (11) and Eq. (12);

b) Calculate ∂P
∂Ω

and ∂T
∂Ω

according to Eq. (15) and

Eq. (17), respectively;

c) Increment the gradient ∂L
∂Ω

according to Eq. (13),

Eq. (14) and Eq. (16);

until Traverse all the pairwise and triplet units in each

mini-batch.

2. Update Ωh+1 = Ωh − ωh
∂L
∂Ωh

and h← h+ 1.

until h > H

∂x
i,a
A

∂Ω
,
∂x

j,r
B

∂Ω
,
∂x

k,s
B

∂Ω
in each mini-batch, in which they can be

obtained by separately running the forward and backward

propagation for each image in both the pairwise and triplet

units. Because of the algorithm needs to go through all the

pairwise and triplet units to accumulate the gradients in each

iteration, we call it the P2S gradient descent algorithm. We

show the overall process in Algorithm 1.

4. Experiments

4.1. Datasets and Settings

Datasets We evaluate our method on four benchmark

datasets, namely 3DPeS [2], CUHK01 [17], PRID2011 [12]

and Market1501 [42]. Each of them has at least one image

for each person and from each camera view.

3DPeS: The dataset has 1011 images of 192 persons cap-

tured from 8 outdoor cameras with significantly different

viewpoints. The image number of each person varies from

2 to 26. We utilize the same protocol with [3], where half

of the persons are used for training and the left for testing.

CUHK01: The dataset contains 971 persons captured

from two camera views in a campus environment, and there

are two images for each person under every camera view.

We utilize the same protocol with [31], where 871 person

images are used for training and the left for testing.

PRID2011: The dataset includes 749 persons, captured

by two disjoint cameras, with sequences lengths of 5 to 675

frames. Following the protocol used in [37], we only con-

sider the first 200 persons, who appear in both cameras.

Market1501: The dataset contains 32668 images of
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Table 1. Matching rates(%) on the 3DPeS dataset.
Methods Top1 Top5 Top10 Top15 Top20

KISSME [15] 22.94 48.71 62.21 72.39 78.11

LF [28] 33.43 45.50 69.98 76.53 81.03

ME [27] 53.30 76.79 86.03 89.37 92.78

kLFDA [35] 54.02 77.74 85.92 90.04 92.38

SCSP [3] 57.29 78.97 85.01 89.52 91.51

Our Method (P2P) 61.97 84.17 92.19 93.85 95.94

Our Method (P2S) 71.16 90.51 95.19 96.88 97.60

1501 identities. Each identity is captured by six cameras

at most, and two cameras at least. We use the provided

fixed training and test set, under both the single-query and

multi-query evaluation settings as in [38].

Parameter setting The weights are initialized from two

zero-mean Gaussian distribution with the standard devia-

tions from 0.01 to 0.001, respectively. The bias terms are

set to 0. The learning rate ω = 0.01, the updating rate

η = 0.001, the weight parameters α = 0.1, β = 0.01, the

direction control parameters µ = 0.6, ν = 0.4 and the mar-

gin parameters Cp = 0.2,Mp = 0.3,Mt = 1.2.

Evaluation protocol The dataset is separated into the

training set and the testing set, in which images of the same

person can only appear in either set. The testing set is fur-

ther divided into probe set and gallery set, and the two sets

contains different images of the same person. The result

is evaluated by cumulative matching characteristic (CMC)

curve [9], which is an estimation of finding the corrected

match in the top n match. Final performance is averaged

over ten random repeats of the process.

Comparison Results We compare our results with sev-

eral existing methods on the four benchmark datasets,

namely KISSME [15], LADF [19], LF [28], kLFDA [35],

SCSP [3], ITML [6], LMNN [32], ME [27], LDNS [38],

JSC [31], TDL [37], Bow [42] and IDLA [1]. In order to

analyze how each ingredient contributes to the final perfor-

mance improvement, we report the results of our method in

two variations, i.e. P2P and P2S in each of the table, where-

as the former P2P results are obtained without the triplet

term, and the P2S utilizes the complete constraints. De-

tailed results are listed from Table 1 to Table 4, where the

best performance is highlighted in bold red, and the second

best is highlighted in blue.

4.2. Results

Table 1 lists the results on the 3DPeS dataset, in which

our P2P method gets the second best performance, con-

tributed by the part-based deep CNN architecture, and our

P2S method achieves the best performance in all Top 1 to

Top 20 accuracies. Compared with previous best performed

method SCSP [3] on this dataset, our two methods outper-

form it by 4.68% and 13.87% in Top 1 accuracy, respective-

ly. In addition, benefit from the P2S information used in the

Table 2. Matching rates(%) on the CUHK01 dataset.
Methods Top1 Top5 Top10 Top15 Top20

KISSME [15] 29.40 59.34 71.45 80.09 88.12

ITML [6] 17.10 41.03 53.12 63.87 69.36

LMNN [32] 21.17 49.49 61.12 69.93 78.32

IDLA [1] 65.00 89.33 92.04 93.74 96.51

JSC [31] 65.71 89.41 92.52 93.74 96.63

Our Method (P2P) 68.91 89.23 94.29 96.35 96.74

Our Method (P2S) 77.34 93.51 96.73 97.84 98.53

Table 3. Matching rates(%) on the PRID2011 dataset.
Methods Top1 Top5 Top10 Top20

KISSME [15] 28.54 59.78 72.13 83.26

LF [28] 26.40 56.07 69.89 81.12

LMNN [32] 14.38 38.09 50.22 67.19

LADF [19] 8.20 20.45 29.89 42.25

TDL [37] 30.22 59.10 74.04 88.43

Our Method (P2P) 62.24 88.73 98.61 99.92

Our Method (P2S) 70.71 95.15 98.92 100.00

triplet term, the P2S method wins the P2P method 9.19% in

Top 1 accuracy.

The results from the CUHK01 dataset are reported in Ta-

ble 2, and listed benchmark works include both traditional

methods and deep learning based methods. From the result-

s, we can see that our two methods outperform the previous

best accuracy achieved by a deep learning based methods

IDLA [1] and JSC [31]. In particular, our two methods out-

perform the JSC method with 3.20% and 11.63% in Top 1

accuracy, respectively. Similar to that in Table 1 , the P2S

method beats the P2P method by 8.43% in Top 1 accuracy

by taking the P2S information into consideration.

In Table 3, the PRID2011 dataset is specially designed

for video based person Re-ID problem. To make fair com-

parison, we choose to not use any video-based cue in our

P2S method, i.e. the same way as in [37]. Results again

show that, our P2P method wins the second best perfor-

mance and our P2S method achieves the best performance

in all Top 1 to Top 20. Compared with previously the best

method TDL [37], our two proposed methods outperform it

by 32.02% and 40.49% in Top 1 accuracy, respectively. In

addition, the P2S method wins the P2P method by 8.47% in

Top 1 accuracy.

Finally the Market1501 dataset is a newly proposed large

scale dataset for person Re-ID. The best performance was

obtained by a conventional method LDNS [38]. As illustrat-

ed in Table 4, the proposed two methods outperform LDNS

by 0.29% and 9.70% in Top 1 accuracy under the single-

query setting, and 4.53% and 14.22% in Top 1 accuracy

under the multi-query setting, respectively. Again, the p-

resented P2S method wins the P2P method by 9.41% and

9.69% in Top 1 accuracy under the single-query and the

multi-query evaluation settings, respectively. For the mAP

evaluation, the same conclusion can be made.
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Figure 4. CMC curves on the CUHK01 dataset with varying parameters, in which (a) shows the matching results with varying α and setting

Cp = 0.2,Mp = 0.3 and Mt = 1.2, (b) shows the matching results with varying Cp,Mp and setting α = 0.1 and Mt = 1.2; and (c)

shows the matching results with varying Mt and setting α = 0.1, Cp = 0.2,Mp = 0.3.

Table 4. Matching rates(%) on the Market1501 dataset.

Methods
Single-Query Multi-Query

Top1 mAP Top1 mAP

Bow [42] 34.38 14.10 42.64 19.47

kLFDA [35] 51.37 24.43 52.67 27.36

KISSME [15] 40.50 19.02 −− −−

LDNS [38] 61.02 35.68 71.56 46.03

SCSP [3] 51.90 26.35 −− −−

Our Method (P2P) 61.31 35.71 76.09 47.92

Our Method (P2S) 70.72 44.27 85.78 55.73

Table 5. Influence of the direction control parameters.

Datasets
µ=1.0, ν=0.0 µ=0.6, ν=0.4 µ=0.4, ν=0.6

Top1 Top5 Top1 Top5 Top1 Top5

3DPeS 64.38 88.10 71.16 90.51 69.28 89.91

CUHK01 71.27 92.02 77.34 93.51 74.54 92.83

PRID2011 65.32 90.19 70.71 95.15 68.24 93.32

Market1501 63.82 88.78 70.72 90.52 68.21 89.09

Parameter Analysis As observed in our experi-

ments, the weight parameter α, the margin parameters

Cp,Mp,Mt, and the direction control parameters µ, ν have

major effects to our method. In the following, we give an

empirical analysis of our method on the CUHK01 dataset.

The influence of parameters Cp,Mp,Mt and α is shown

in Fig. 4, in which we analyze the influence by changing one

parameter while fixing the others. From the results, we can

see that our method achieves its best performance by setting

α = 0.1, Cp = 0.2,Mp = 0.3 and Mt = 1.2. Besides,

we can conclude the following three empirical conclusions:

1) For parameter α, large value will lead to the over-fitting

problem and small value will weaken the strength of P2S

constraint. 2) For parameters Cp,Mp, small down-margin

will lead to the over-fitting problem, and large upper-margin

will make the numerical instability. 3) Similarly, largeMt

will also lead to the numerical instability and smallMt will

make the candidate positive and negative samples undistin-

guishable.

Different from the conventional triplet formulation pro-

posed by [7], our symmetric triplet framework introduces

a weighed negative distance term to optimize the back-

propagation of each sample in one triplet unit. Therefore,

the conventional triplet formulation is a special case of our

method by setting µ = 1.0, ν = 0.0 and η = 0.0. The

comparison results are shown in Table 5, in which our sym-

metric triplet framework outperforms the conventional one

with 6.78%, 6.07%, 5.39% and 6.90% in Top 1 on the four

datasets, respectively. Benefit from the parameter updat-

ing strategy, the initial values of µ and ν may have a s-

light effect to our method, in which we can see the perfor-

mance only fall 1.88%, 2.80%, 2.47% and 2.51% by setting

µ = 0.4, ν = 0.6 on the four datasets, respectively.

5. Conclusion

In this paper, we propose a novel person re-identification

method by point to set (P2S) similarity comparison in a

part-based deep CNN to perform integrated feature learn-

ing and fusion. The deep architecture learns the global fea-

tures, local features and fused features in the global sub-

network, local sub-network and fusion sub-network, respec-

tively. The P2S distance metric jointly minimizes the intra-

class distance and maximizes the inter-class distance, while

back-propagating the gradient to optimize the deep param-

eters. As a result, the learned deep ranking model can ef-

fective distinguish different persons by learning discrimina-

tive and stable features. Experiment results on the 3DPeS,

CUHK01, PRID2011 and Market1501 datasets show that

our method outperforms the state-of-the-art approaches in

person re-identification.
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