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Abstract

Scene parsing, or recognizing and segmenting objects

and stuff in an image, is one of the key problems in computer

vision. Despite the community’s efforts in data collection,

there are still few image datasets covering a wide range of

scenes and object categories with dense and detailed anno-

tations for scene parsing. In this paper, we introduce and

analyze the ADE20K dataset, spanning diverse annotations

of scenes, objects, parts of objects, and in some cases even

parts of parts. A scene parsing benchmark is built upon the

ADE20K with 150 object and stuff classes included. Several

segmentation baseline models are evaluated on the bench-

mark. A novel network design called Cascade Segmentation

Module is proposed to parse a scene into stuff, objects, and

object parts in a cascade and improve over the baselines.

We further show that the trained scene parsing networks

can lead to applications such as image content removal and

scene synthesis1.

1. Introduction

Semantic understanding of visual scenes is one of the

holy grails of computer vision. The emergence of large-

scale image datasets like ImageNet [26], COCO [17] and

Places [35], along with the rapid development of the deep

convolutional neural network (ConvNet) approaches, have

brought great advancements to visual scene understanding.

Nowadays, given a visual scene of a living room, a robot

equipped with a trained ConvNet can accurately predict the

scene category. However, to freely navigate in the scene

and manipulate the objects inside, the robot has far more

information to digest. It needs to recognize and localize not

only the objects like sofa, table, and TV, but also their parts,

e.g., a seat of a chair or a handle of a cup, to allow proper

interaction, as well as to segment the stuff like floor, wall

and ceiling for spatial navigation.

Scene parsing, or recognizing and segmenting objects

and stuff in an image, remains one of the key problems in

1Dataset and pretrained models are available at

http://groups.csail.mit.edu/vision/datasets/ADE20K/

  

Figure 1. Images in the ADE20K dataset are densely annotated

in details with objects and parts. The first row shows the sample

images, the second row shows the annotation of objects and stuff,

and the third row shows the annotation of object parts.

scene understanding. Going beyond image-level recogni-

tion, scene parsing requires a much denser annotation of

scenes with a large set of objects. However, the current

datasets have limited number of objects (e.g., COCO [17],

Pascal [10]) and in many cases those objects are not the

most common objects one encounters in the world (like fris-

bees or baseball bats), or the datasets only cover a limited

set of scenes (e.g., Cityscapes [7]). Some notable excep-

tions are Pascal-Context [21] and the SUN database [32].

However, Pascal-Context still contains scenes primarily fo-

cused on 20 object classes, while SUN has noisy labels at

the object level.

Our goal is to collect a dataset that has densely annotated

images (every pixel has a semantic label) with a large and

an unrestricted open vocabulary. The images in our dataset

are manually segmented in great detail, covering a diverse

set of scenes, object and object part categories. The chal-

lenges for collecting such annotations include finding reli-

able annotators, as well as the fact that labeling is difficult

if the class list is not defined in advance. On the other hand,

open vocabulary naming also suffers from naming inconsis-
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tencies across different annotators. In contrast, our dataset

was annotated by a single expert annotator, providing ex-

tremely detailed and exhaustive image annotations. On av-

erage, our annotator labeled 29 annotation segments per im-

age, compared to the 16 segments per image labeled by ex-

ternal annotators (like workers from Amazon Mechanical

Turk). Furthermore, the data consistency and quality are

much higher than that of external annotators. Fig. 1 shows

examples from our dataset.

The paper is organized as follows. Firstly we describe

the ADE20K dataset, the collection process and statistics.

We then introduce a generic network design called Cascade

Segmentation Module, which enables neural networks to

segment stuff, objects, and object parts in cascade. Several

semantic segmentation networks are evaluated on the scene

parsing benchmark of ADE20K as baselines. The proposed

Cascade Segmentation Module is shown to improve over

those baselines. We further apply the scene parsing net-

works to the tasks of automatic scene content removal and

scene synthesis.

1.1. Related work

Many datasets have been collected for the purpose of se-

mantic understanding of scenes. We review the datasets

according to the level of details of their annotations, then

briefly go through the previous work of semantic segmenta-

tion networks.

Object classification/detection datasets. Most of the

large-scale datasets typically only contain labels at the im-

age level or provide bounding boxes. Examples include Im-

agenet [26], Pascal [10], and KITTI [12]. Imagenet has the

largest set of classes, but contains relatively simple scenes.

Pascal and KITTI are more challenging and have more ob-

jects per image, however, their classes as well as scenes are

more constrained.

Semantic segmentation datasets. Existing datasets

with pixel-level labels typically provide annotations only

for a subset of foreground objects (20 in PASCAL VOC [10]

and 91 in Microsoft COCO [17]). Collecting dense anno-

tations where all pixels are labeled is much more challeng-

ing. Such efforts include SIFT Flow dataset [18], Pascal-

Context [21], NYU Depth V2 [22], SUN database [32],

SUN RGB-D dataset [28], CityScapes dataset [7], and

OpenSurfaces [2, 3].

Datasets with objects, parts and attributes. Core

dataset [6] is one of the earliest work that explores the object

part annotation across categories. Recently, two datasets

were released that go beyond the typical labeling setup by

also providing pixel-level annotation for the object parts, i.e.

Pascal-Part dataset [5], or material classes, i.e. OpenSur-

faces [2, 3]. We advance this effort by collecting very high-

resolution imagery of a much wider selection of scenes,

containing a large set of object classes per image. We an-

notated both stuff and object classes, for which we addi-

tionally annotated their parts, and parts of these parts. We

believe that our dataset, ADE20K, is one of the most com-

prehensive datasets of its kind. We provide a comparison

between datasets in Sec. 2.5.

Semantic segmentation/parsing models.. There are a

lot of models proposed for image parsing. For example,

MRF frameworks are proposed to parse images in differ-

ent levels [30] or segment rare object classes [33]; detec-

tion is combined with segmentation to improve the perfor-

mance [31]; stuff classes are leveraged to localize objects

[13]. With the success of convolutional neural networks

(CNN) for image classification [16], there is growing in-

terest for semantic image parsing using CNNs with dense

output, such as the multiscale CNN [11], recurrent CNN

[25], fully CNN [19], deconvolutional neural networks [24],

encoder-decoder SegNet [1], multi-task network cascades

[9], and DilatedNet [4, 34]. They are benchmarked on Pas-

cal dataset with impressive performance on segmenting the

20 object classes. Some of them [19, 1] are evaluated on

Pascal-Context [21] or SUN RGB-D dataset [28] to show

the capability to segment more object classes in scenes.

Joint stuff and object segmentation is explored in [8] which

uses pre-computed superpixels and feature masking to rep-

resent stuff. Cascade of instance segmentation and catego-

rization has been explored in [9]. In this paper we introduce

a generic network module to segment stuff, objects, and ob-

ject parts jointly in a cascade, which could be integrated in

existing networks.

2. ADE20K: Fully Annotated Image Dataset

In this section, we describe our ADE20K dataset and an-

alyze it through a variety of informative statistics.

2.1. Dataset summary

There are 20,210 images in the training set, 2,000 images

in the validation set, and 3,000 images in the testing set. All

the images are exhaustively annotated with objects. Many

objects are also annotated with their parts. For each object

there is additional information about whether it is occluded

or cropped, and other attributes. The images in the valida-

tion set are exhaustively annotated with parts, while the part

annotations are not exhaustive over the images in the train-

ing set. The annotations in the dataset are still growing.

Sample images and annotations from the ADE20K dataset

are shown in Fig. 1.

2.2. Image annotation

For our dataset, we are interested in having a diverse set

of scenes with dense annotations of all the objects present.

Images come from the LabelMe [27], SUN datasets [32],

and Places [35] and were selected to cover the 900 scene
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Figure 2. Annotation interface, the list of the objects and their as-

sociated parts in the image.

categories defined in the SUN database. Images were an-

notated by a single expert worker using the LabelMe inter-

face [27]. Fig. 2 shows a snapshot of the annotation inter-

face and one fully segmented image. The worker provided

three types of annotations: object segments with names, ob-

ject parts, and attributes. All object instances are segmented

independently so that the dataset could be used to train and

evaluate detection or segmentation algorithms. Datasets

such as COCO [17], Pascal [10] or Cityscape [7] start by

defining a set of object categories of interest. However,

when labeling all the objects in a scene, working with a

predefined list of objects is not possible as new categories

appear frequently (see fig. 5.d). Here, the annotator cre-

ated a dictionary of visual concepts where new classes were

added constantly to ensure consistency in object naming.

Object parts are associated with object instances. Note

that parts can have parts too, and we label these associa-

tions as well. For example, the ‘rim’ is a part of a ‘wheel’,

which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’

that can be part of a ‘cabinet’. The total part hierarchy has

a depth of 3. The object and part hierarchy is in the supple-

mentary materials.

2.3. Annotation consistency

Defining a labeling protocol is relatively easy when the

labeling task is restricted to a fixed list of object classes,

however it becomes challenging when the class list is open-

ended. As the goal is to label all the objects within each

image, the list of classes grows unbounded. Many object

classes appear only a few times across the entire collection

of images. However, those rare object classes cannot be ig-

nored as they might be important elements for the interpre-

tation of the scene. Labeling in these conditions becomes

difficult because we need to keep a growing list of all the

object classes in order to have a consistent naming across

the entire dataset. Despite the annotator’s best effort, the

process is not free of noise.

To analyze the annotation consistency we took a subset

of 61 randomly chosen images from the validation set, then

60.2% 95.1% 82.3% 89.7%
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Figure 3. Analysis of annotation consistency. Each column shows

an image and two segmentations done by the same annotator at

different times. Bottom row shows the pixel discrepancy when

the two segmentations are subtracted, and the percentage of pixels

with the same label. On average across all re-annotated images,

82.4% of pixels got the same label. In the example in the first

column the percentage of pixels with the same label is relatively

low because the annotator labeled the same region as ‘snow’ and

‘ground’ during the two rounds of annotation. In the third column,

there were many objects in the scene and the annotator missed

some between the two segmentations.

asked our annotator to annotate them again (there is a time

difference of six months). One expects that there are some

differences between the two annotations. A few examples

are shown in Fig 3. On average, 82.4% of the pixels got the

same label. The remaining 17.6% of pixels had some errors

for which we grouped into three error types as follows:

• Segmentation quality: Variations in the quality of

segmentation and outlining of the object boundary.

One typical source of error arises when segmenting

complex objects such as buildings and trees, which can

be segmented with different degrees of precision. 5.7%

of the pixels had this type of error.

• Object naming: Differences in object naming (due

to ambiguity or similarity between concepts, for in-

stance, calling a big car a ‘car’ in one segmentation and

a ‘truck’ in the another one, or a ‘palm tree’ a ‘tree’.

6.0% of the pixels had naming issues. These errors can

be reduced by defining a very precise terminology, but

this becomes much harder with a large growing vocab-

ulary.

• Segmentation quantity: Missing objects in one of the

two segmentations. There is a very large number of

objects in each image and some images might be an-

notated more thoroughly than others. For example, in

the third column of Fig 3 the annotator missed some
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small objects in different annotations. 5.9% of the pix-

els are due to missing labels. A similar issue existed

in segmentation datasets such as the Berkeley Image

segmentation dataset [20].

The median error values for the three error types are:

4.8%, 0.3% and 2.6% showing that the mean value is dom-

inated by a few images, and that the most common type of

error is segmentation quality.

To further compare the annotation done by our single

expert annotator and the AMT-like annotators, 20 images

from the validation set are annotated by two invited exter-

nal annotators, both with prior experience in image labeling.

The first external annotator had 58.5% of inconsistent pixels

compared to the segmentation provided by our annotator,

and the second external annotator had 75% of the inconsis-

tent pixels. Many of these inconsistencies are due to the

poor quality of the segmentations provided by external an-

notators (as it has been observed with AMT which requires

multiple verification steps for quality control [17]). For the

best external annotator (the first one), 7.9% of pixels have

inconsistent segmentations (just slightly worse than our an-

notator), 14.9% have inconsistent object naming and 35.8%

of the pixels correspond to missing objects, which is due to

the much smaller number of objects annotated by the exter-

nal annotator in comparison with the ones annotated by our

expert annotator. The external annotators labeled on aver-

age 16 segments per image while our annotator provided 29

segments per image.

2.4. Dataset statistics

Fig. 4.a shows the distribution of ranked object frequen-

cies. The distribution is similar to a Zipf’s law and is typi-

cally found when objects are exhaustively annotated in im-

ages [29, 32]. They differ from the ones from datasets such

as COCO or ImageNet where the distribution is more uni-

form resulting from manual balancing.

Fig. 4.b shows the distributions of annotated parts

grouped by the objects they belong to and sorted by fre-

quency within each object class. Most object classes also

have a non-uniform distribution of part counts. Fig. 4.c and

Fig. 4.d show how objects are shared across scenes and how

parts are shared by objects. Fig. 4.e shows the variability in

the appearances of the part ‘door’.

The mode of the object segmentations is shown in

Fig. 5.a and contains the four objects (from top to bottom):

‘sky’, ‘wall’, ‘building’ and ‘floor’. When using simply the

mode to segment the images, it gets, on average, 20.9% of

the pixels of each image right. Fig. 5.b shows the distribu-

tion of images according to the number of distinct classes

and instances. On average there are 19.5 instances and 10.5

object classes per image, larger than other existing datasets

(see Table 1). Fig. 5.c shows the distribution of parts.

Table 1. Comparison of semantic segmentation datasets.

Images Obj. Inst. Obj. Cls. Part Inst. Part Cls. Obj. Cls. per Img.

COCO 123,287 886,284 91 0 0 3.5

ImageNet∗ 476,688 534,309 200 0 0 1.7

NYU Depth V2 1,449 34,064 894 0 0 14.1

Cityscapes 25,000 65,385 30 0 0 12.2

SUN 16,873 313,884 4,479 0 0 9.8

OpenSurfaces 22,214 71,460 160 0 0 N/A

PascalContext 10,103 ∼104,398∗∗ 540 181,770 40 5.1

ADE20K 22,210 434,826 2,693 175,961 476 9.9

∗ has only bounding boxes (no pixel-level segmentation). Sparse annotations.
∗∗ PascalContext dataset does not have instance segmentation. In order to estimate

the number of instances, we find connected components (having at least 150pixels)

for each class label.

As the list of object classes is not predefined, there are

new classes appearing over time of annotation. Fig. 5.d

shows the number of object (and part) classes as the number

of annotated instances increases. Fig. 5.e shows the proba-

bility that instance n + 1 is a new class after labeling n in-

stances. The more segments we have, the smaller the proba-

bility that we will see a new class. At the current state of the

dataset, we get one new object class every 300 segmented

instances.

2.5. Comparison with other datasets

We compare ADE20K with existing datasets in Tab. 1.

Compared to the largest annotated datasets, COCO [17] and

Imagenet [26], our dataset comprises of much more diverse

scenes, where the average number of object classes per im-

age is 3 and 6 times larger, respectively. With respect to

SUN [32], ADE20K is roughly 35% larger in terms of im-

ages and object instances. However, the annotations in our

dataset are much richer since they also include segmenta-

tion at the part level. Such annotation is only available for

the Pascal-Context/Part dataset [21, 5] which contains 40

distinct part classes across 20 object classes. Note that we

merged some of their part classes to be consistent with our

labeling (e.g., we mark both left leg and right leg as the same

semantic part leg). Since our dataset contains part annota-

tions for a much wider set of object classes, the number of

part classes is almost 9 times larger in our dataset.

An interesting fact is that any image in ADE20K con-

tains at least 5 objects, and the maximum number of object

instances per image reaches 273, and 419 instances, when

counting parts as well. This shows the high annotation com-

plexity of our dataset.

3. Cascade Segmentation Module

While the frequency of objects appearing in scenes fol-

lows a long-tail distribution, the pixel ratios of objects also

follow such a distribution. For example, the stuff classes

like ‘wall’, ‘building’, ‘floor’, and ‘sky’ occupy more than

40% of all the annotated pixels, while the discrete objects,

such as ‘vase’ and ‘microwave’ at the tail of the distribution

(see Fig. 4b), occupy only 0.03% of the annotated pixels.

Because of the long-tail distribution, a semantic segmenta-

tion network can be easily dominated by the most frequent
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Figure 4. a) Object classes sorted by frequency. Only the top 270 classes with more than 100 annotated instances are shown. 68 classes

have more than a 1000 segmented instances. b) Frequency of parts grouped by objects. There are more than 200 object classes with

annotated parts. Only objects with 5 or more parts are shown in this plot (we show at most 7 parts for each object class). c) Objects ranked

by the number of scenes they are part of. d) Object parts ranked by the number of objects they are part of. e) Examples of objects with

doors. The bottom-right image is an example where the door does not behave as a part.
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Figure 5. a) Mode of the object segmentations contains ‘sky’, ‘wall’, ‘building’ and ‘floor’. b) Histogram of the number of segmented

object instances and classes per image. c) Histogram of the number of segmented part instances and classes per object. d) Number of

classes as a function of segmented instances (objects and parts). The squares represent the current state of the dataset. e) Probability of

seeing a new object (or part) class as a function of the number of instances.
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Stuff	Segmenta+on	
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Figure 6. The framework of Cascade Segmentation Module for scene parsing. Stuff stream generates the stuff segmentation and objectness

map from the shared feature activation. The object stream then generates object segmentation by integrating the objectness map from the

stuff stream. Finally the full scene segmentation is generated by merging the object segmentation and the stuff segmentation. Similarly, part

stream takes object score map from object stream to further generate object-part segmentation. Since not all objects have part annotation,

the part stream is optional. Feature sizes are based on the Cascade-dilatedNet, the Cascade-SegNet has different but similar structures.

stuff classes. On the other hand, there are spatial layout

relations among stuffs and objects, and the objects and the

object parts, which are ignored by the design of the previ-

ous semantic segmentation networks. For example, a draw-

ing on a wall is a part of the wall (the drawing occludes the

wall), and the wheels on a car are also parts of the car.

To handle the long-tail distribution of objects in scenes

and the spatial layout relations of scenes, objects, and ob-

ject parts, we propose a network design called Cascade Seg-

mentation Module. This module is a generic network de-

sign which can potentially be integrated in any previous

semantic segmentation networks. We first categorize se-

mantic classes of the scenes into three macro classes: stuff

(sky, road, building, etc), foreground objects (car, tree, sofa,

etc), and object parts (car wheels and door, people head and

torso, etc). Note that in some scenarios there are some ob-

ject classes like ‘building’ or ‘door’ that could belong to ei-

ther of two macro classes, here we assign the object classes

to their most likely macro class.

In the network for scene parsing, different streams of

high-level layers are used to represent different macro

classes and recognize the assigned classes. The segmenta-

tion results from each stream are then fused to generate the

segmentation. The proposed module is illustrated in Fig. 6.

More specifically, the stuff stream is trained to classify

all the stuff classes plus one foreground object class (which

includes all the non-stuff classes). After training, the stuff

stream generates stuff segmentation and a dense objectness

map indicating the probability that a pixel belongs to the

foreground object class. The object stream is trained to clas-

sify the discrete objects. All the non-discrete objects are

ignored in the training loss function of the object stream.

After training, the object stream further segments each dis-

crete object on the predicted objectness map from the stuff

stream. The result is merged with the stuff segmentation to

generate the scene segmentation. For those discrete objects

annotated with parts, the part stream can be jointly trained

to segment object parts. Thus the part stream further seg-

ments parts on each object score map predicted from the

object stream.

The network with the two streams (stuff+objects) or

three streams (stuff+objects+parts) could be trained end-to-

end. The streams share the weights of the lower layers.

Each stream has a training loss at the end. For the stuff

stream we use the per-pixel cross-entropy loss, where the

output classes are all the stuff classes plus the foreground

class (all the discrete object classes are included in it). We

use the per-pixel cross-entropy loss for the object stream,

where the output classes are all the discrete object classes.

The objectness map is given as a ground-truth binary mask

that indicates whether a pixel belongs to any of the stuff

classes or the foreground object class. This mask is used to

exclude the penalty for pixels which belong to any of the

stuff classes in the training loss for the object stream. Sim-

ilarly, we use cross-entropy loss for the part stream. All

part classes are trained together, while non-part pixels are

ignored in training. In testing, parts are segmented on their

associated object score map given by the object stream. The

training losses for the two streams and for the three streams

are L = Lstuff+Lobject and L = Lstuff+Lobject+Lpart

respectively.

The configurations of each layer are based on the base-

line network being used. We integrate the proposed module

on two baseline networks Segnet [1] and DilatedNet [4, 34].

In the following experiments, we evaluate that the proposed

module brings great improvements for scene parsing.

4. Experiments

To train the networks for scene parsing, we select the

top 150 objects ranked by their total pixel ratios from the

ADE20K dataset and build a scene parsing benchmark of
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ADE20K, termed as MIT SceneParse1502. As the orig-

inal images in the ADE20K dataset have various sizes,

for simplicity we rescale those large-sized images to make

their minimum heights or widths as 512 in the benchmark.

Among the 150 objects, there are 35 stuff classes (i.e., wall,

sky, road) and 115 discrete objects (i.e., car, person, table).

The annotated pixels of the 150 objects occupy 92.75% of

all the pixels in the dataset, where the stuff classes occupy

60.92%, and discrete objects occupy 31.83%.

4.1. Scene parsing

As for baselines of scene parsing on SceneParse150

benchmark, we train three semantic segmentation networks:

SegNet [1], FCN-8s [19], and DilatedNet [4, 34]. SegNet

has encoder and decoder architecture for image segmen-

tation; FCN upsamples the activations of multiple layers

in the CNN for pixelwise segmentation; DilatedNet drops

pool4 and pool5 from fully convolutional VGG-16 net-

work, and replaces the following convolutions with dilated

convolutions (or atrous convolutions), a bilinear upsam-

pling layer is added at the end.

We integrate the proposed cascade segmentation module

on the two baseline networks: SegNet and DilatedNet. We

did not integrate it with FCN because the original FCN re-

quires a large amount of GPU memory and has skip connec-

tions across layers. For the Cascade-SegNet, two streams

share a single encoder, from conv1 1 to conv5 3, while

each stream has its own decoder, from deconv5 3 to

loss. For the Cascade-DilatedNet, the two streams split

after pool3, and keep spatial dimensions of their feature

maps afterwards. For a fair comparison and benchmark pur-

poses, the cascade networks only have stuff stream and ob-

ject stream. We train these network models using the Caffe

library [15] on NVIDIA Titan X GPUs. Stochastic gradient

descent with 0.001 learning rate and 0.9 momentum is used

as optimizer, and we drop learning rate every 10k iterations.

Results are reported in four metrics commonly used

for semantic segmentation [19]: Pixel accuracy indicates

the proportion of correctly classified pixels; Mean accu-

racy indicates the proportion of correctly classified pix-

els averaged over all the classes. Mean IoU indicates the

intersection-over-union between the predicted and ground-

truth pixels, averaged over all the classes. Weighted IoU

indicates the IoU weighted by the total pixel ratio of each

class.

Since some classes like ‘wall’ and ‘floor’ occupy far

more pixels of the images, pixel accuracy is biased to reflect

the accuracy over those few large classes. Instead, mean

IoU reflects how accurately the model classifies each dis-

crete class in the benchmark. The scene parsing data and

the development toolbox will be made available to the pub-

lic. We take the average of the pixel accuracy and mean IoU

2http://sceneparsing.csail.mit.edu/

Table 2. Performance on the validation set of SceneParse150.
Networks Pixel Acc. Mean Acc. Mean IoU Weighted IoU

FCN-8s 71.32% 40.32% 0.2939 0.5733

SegNet 71.00% 31.14% 0.2164 0.5384

DilatedNet 73.55% 44.59% 0.3231 0.6014

Cascade-SegNet 71.83% 37.90% 0.2751 0.5805

Cascade-DilatedNet 74.52% 45.38% 0.3490 0.6108

Table 3. Performance of stuff and discrete object segmentation.
35 stuff 115 discrete objects

Networks Mean Acc. Mean IoU Mean Acc. Mean IoU

FCN-8s 46.74% 0.3344 38.36% 0.2816

SegNet 43.17% 0.3051 27.48% 0.1894

DilatedNet 49.03% 0.3729 43.24% 0.3080

Cascade-SegNet 40.46% 0.3245 37.12% 0.2600

Cascade-DilatedNet 49.80% 0.3779 44.04% 0.3401

as the evaluation criteria in the challenge.

The segmentation results of the baselines and the cas-

cade networks are listed in Table 2. Among the base-

lines, the DilatedNet achieves the best performance on the

SceneParse150. The cascade networks, Cascade-SegNet

and Cascade-DilatedNet both outperform the original base-

lines. In terms of mean IoU, the improvement brought by

the proposed cascade segmentation module for SegNet is

6%, and for DilatedNet is 2.5%. We further decompose the

performance of networks on 35 stuff and 115 discrete ob-

ject classes respectively, in Table 3. We observe that the

two cascade networks perform much better on the 115 dis-

crete objects compared to the baselines. This validates that

the design of cascade module helps improve scene parsing

for the discrete objects as they have less training data but

more visual complexity compared to those stuff classes.

Segmentation examples from the validation set are

shown in Fig. 7. Compared to the baseline SegNet and Di-

latedNet, the segmentation results from the Cascade-SegNet

and Cascade-DilatedNet are more detailed. Furthermore,

the objectness maps from the stuff stream highlight the pos-

sible discrete objects in the scenes.

4.2. Part segmentation

For part segmentation, we select the eight object classes

frequently annotated with parts: ‘person’, ‘building’, ‘car’,

‘chair’,‘table’, ‘sofa’, ‘bed’, ‘lamp’. After we filter out the

part classes of those objects with instance number smaller

than 300, there are 36 part classes included in the train-

ing and testing. We train the part stream on the Cascade-

DilatedNet used in the scene parsing.

The results of joint segmentation for stuff, objects, and

object parts are shown in Fig. 8. In a single forward pass the

network with the proposed cascade module is able to parse

scenes at different levels. We use the accuracy instead of the

IoU as the metric to measure the part segmentation results,

as the parts of object instances in the dataset are not fully

annotated. The accuracy for all the parts of the eight objects

is plotted in Fig.8.a The average accuracy is 55.47%.

4.3. Further applications

We show two applications of the scene parsing below:
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Test	image	 Ground	truth	 FCN-8s	 SegNet	 DilatedNet	 Cascade-DilatedNet	 Objectness	Map	

Figure 7. Ground-truths, segmentation results given by the networks, and objectness maps given by the Cascade-DilatedNet.
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Figure 8. Part segmentation results.

Automatic image content removal. Image content

removal methods typically require the users to annotate

the precise boundary of the target objects to be removed.

Here, based on the predicted object probability map from

Cascade-DilatedNet, we automatically identify the image

region of the target objects. After cropping out the target ob-

jects using the predicted object probability map, we simply

use image completion/inpainting methods to fill the holes

in the image. Fig. 9.a shows some examples of the auto-

matic image content removal. It can be seen that with the

predicted object score maps, we are able to crop out the ob-

jects from the image in a precise way. We used the image

completion technique described in [14].

Scene synthesis. Given an scene image, the scene pars-

ing network could predict a semantic label mask. Further-

more, by coupling the scene parsing network with the recent

image synthesis technique proposed in [23], we could also

synthesize a scene image given the semantic label mask.

The general idea is to optimize the code input of a deep im-

age generator network to produce an image that highly ac-

tivates the pixel-wise output of the scene parsing network.

Fig. 9.b shows two synthesized image samples given the se-

mantic label mask in each row. As comparison, we also

show the original image associated with the semantic label

mask.

person

tree

a)

b)

Figure 9. Applications of scene parsing: a) Automatic image con-

tent removal using the object score maps predicted by the scene

parsing network. The first column shows the original images, the

second column contains the object score maps, the third column

shows the filled-in images. b) Scene synthesis. Given annotation

masks, images are synthesized by coupling the scene parsing net-

work and the image synthesis method proposed in [23].

5. Conclusion

In this paper, we introduced a new densely annotated

dataset with the instances of stuff, objects, and parts, cov-

ering a diverse set of visual concepts in scenes. A generic

network design was proposed to parse scenes into stuff, ob-

jects, and object parts in a cascade.
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