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Abstract

Superpixel segmentation of 2D image has been widely

used in many computer vision tasks. However, limited to

the Gaussian imaging principle, there is not a thorough

segmentation solution to the ambiguity in defocus and oc-

clusion boundary areas. In this paper, we consider the es-

sential element of image pixel, i.e., rays in the light space,

and propose light field superpixel (LFSP) segmentation to

eliminate the ambiguity. The LFSP is first defined mathe-

matically and then a refocus-invariant metric named LFSP

self-similarity is proposed to evaluate the segmentation per-

formance. By building a clique system containing 80 neigh-

bors in light field, a robust refocus-invariant LFSP segmen-

tation algorithm is developed. Experimental results on both

synthetic and real light field datasets demonstrate the ad-

vantages over the state-of-the-arts in terms of traditional

evaluation metrics. Additionally the LFSP self-similarity

evaluation under different light field refocus levels shows

the refocus-invariance of the proposed algorithm.

1. Introduction

Superpixel segmentation is the key fundamental to con-

nect pixel-based low-level vision to object-based high-level

understanding, which aims at grouping similar pixels into

larger and more meaningful regions to increase the accuracy

and speed of post processing [21]. To accomplish a good

over-segmentation, previous works [22, 8, 26, 12, 27, 1, 15]

have built various grouping methods to model the proxim-

ity, similarity and good continuation [21] in the classical

Gestalt theory [9]. However, in traditional imaging system

(ideal pinhole model and thin lens model), there inevitably

exist ambiguities in object boundaries where the light rays

emitted from different objects are accumulated, including

vignette, occlusions. These ambiguities may cause image

degradation to disturb superpixel segmentation and further

to decrease the accuracy of object segmentation and recog-

nition.

∗The work was supported in part by NSFC under Grant 61531014,

Grant 61401359 and Grant 61272287.

Figure 1. Light field superpixel segmentation on real scene data.

The left image is a 2D slice of LFSP segmentation in the central

view. For each region in the right images, the first row shows

the close-up and the second and third rows are the corresponding

segmentations on horizontal and vertical EPIs respectively.

To overcome the ambiguity in traditional superpixel seg-

mentation, we introduce the light field superpixel segmen-

tation. The light field [13] records the scene information

both in angular and spatial spaces, forming a 4D function

named L(u, v, x, y). The light field data can benefit super-

pixel segmentation on two aspects. First, since each ray is

recorded in light field, the ambiguity in object boundaries

can be well analyzed. Second, the multi-view nature of the

light field enables the bottom-up grouping not only in the

color and position but also in the structure.

However, 4D light field segmentation is still a challeng-

ing task. As mentioned in [11], light field segmentation

faces two major difficulties. First, each segmentation in

light field ought to be propagated coherently to preserve the

redundance of the 4D data. Second, although the depth is

embedded in the multi-view images, it is still unavailable,

inconvenient and imperfect to segment the full 4D data.

In this paper, we explore superpixel segmentation on 4D

light field. We show that the LFSP can represent the prox-

imity regions better, especially in object boundaries (in Sec-

tion 3). The traditional superpixel is just a 2D slice of LFSP

by fixing the angular dimensions. Additionally, the angular

segmentation by fixing the spatial dimensions in LFSP co-

incides with the light field occlusion theory in [28]. On the

basis of LFSP definition, we analyze the characteristics of
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light field and propose the LFSP self-similarity to evaluate

the segmentation result.

In Section 4, we define a clique system containing 80

neighbors in light field, and embed a 2D disparity map into

the energy function to produce refocus-invariant LFSP seg-

mentation. In Section 5, extensive experimental results are

provided both on synthetic data and real scenes captured by

Lytro [17]. Quantitative and qualitative comparisons show

the effectiveness and robustness of the proposed algorithm.

The main contributions of the work include,

1) The definition of the light field superpixel.

2) A robust refocus-invariant superpixel segmentation al-

gorithm in 4D light field.

2. Related Works

2.1. Light Field in Computer Vision

Unlike conventional imaging systems, light field cam-

eras [17, 20] can record the intensity of objects in a higher

angular dimension, and have benefited many problems in

computer vision, such as depth and scene flow estimation

[30, 28, 23], saliency detection [14], super resolution [3]

and material recognition [29]. Light field can generate

depth map [30, 24, 28] from multiple cues such as epipolar

lines, defocus and correspondence. Compared with tradi-

tional multi-view based stereo matching methods, light field

based methods can provide a high quality sub-pixel depth

map, especially in occlusion boundaries. In this work, the

algorithm developed by Wang et al. [28] is utilized to gen-

erate depth map for LFSP segmentation.

For light field segmentation, only a few of approaches

have been proposed, especially most of them are interac-

tive. Wanner et al. [32] proposed GCMLA (globally con-

sistent multi-label assignment) for light field segmentation,

where the color and disparity cues of input seeds are used

to train a random forest, which is used to predict the la-

bel of each pixel. However, the method can only segment

the central view of light field. Mihara et al. [19] improved

the GCMLA by building a graph in the 4D space. A ‘4-

neighboring system’ in light field is defined and the 4D seg-

mentation is optimized using the MRF. Hog et al. [10] ex-

ploited the light field redundancy in the ray space by defin-

ing free rays and ray bundles. A simplified graph-based

light field is constructed, which greatly decreases the com-

putational complexity. Xu et al. [34] segmented the 4D light

field automatically. By defining the LF-linearity and occlu-

sion detector in light field, a color and texture independent

algorithm for transparent object segmentation is proposed.

Compared with previous segmentations, our work fo-

cuses on a smaller unit – the superpixel in light field, and it

is the basis for many computer vision tasks [21, 14, 36, 4, 2].

2.2. Superpixel Segmentation

Superpixel segmentation of 2D image has been re-

searched for years and many excellent algorithms have been

proposed. Shi et al. [22] treated the image as a 2D graph us-

ing contour and texture cues. They proposed the normalized

cuts to globally optimize the cost function. Felzenszwalb et

al. [8] improved the efficiency of normalized cuts using an

efficient graph cuts method. Liu et al. [16] introduced an

entropy rate term and balance term into a clustering objec-

tive function to preserve jagged object boundaries. Achanta

et al. [1] adapted a k-means clustering algorithm to seek

the cluster centers iteratively. Li et al. [15] mapped the tra-

ditional color and position features into a higher spectral

space to produce more compact and uniform superpixels.

All these works are built on the traditional 2D image and

are not suitable for 4D LFSP segmentation. Although the

4D light field can be treated as a serial of 2D images and

each image can be segmented using these algorithms, ig-

noring the connection between these images not only cuts

off the segmentation consistency but also increases the run-

ning time (Fig.7(d)). In contrast to previous independent

segmentation algorithms, we treat the 4D light field as a

whole and improve the accuracy and running time of LFSP

using the angular coherence in light field.

3. LFSP Definition and Evaluation Metric

In this section, we first present the definition of light

field superpixel (LFSP). Then the difference and features

of LFSP compared with traditional 2D superpixel are ana-

lyzed. Finally, we propose the evaluation metric of LFSP.

3.1. LFSP Definition

The superpixel algorithms model the proximity, similar-

ity and continuation of the object in the 2D image. We

ray-trace the points in the superpixel from the 2D image to

the 3D space (see Fig.2(a)). In the propagation, each point

spreads into multiple light rays and reaches the object in the

real world. The LFSP contains all rays here.

The inverse propagation mentioned above can only

model the all-in-focus and non-occlusion situations, how-

ever the following two conditions are hard to achieve actu-

ally. First, when the camera focusing on a different depth

(Fig.2(b)), there exist defocus blurs on the sensor and the

original clear boundary is blurred. Since the boundary pixel

both suffers rays emitted from different objects, it is am-

biguous to segment it. Second, for the occlusion points

(Fig.2(c)), when the camera is focused on the background, a

part of light rays emitted from the background point are oc-

cluded by the occluder so that the convergent point on the

imaging sensor is a mixture of these rays – part from the

background and part from the occluder, which makes it dif-

ficult to segment the pixel. The light field camera records
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Figure 2. (a) All rays emitted from P1, P2 to p1, p2 are contained in the LFSP. (b) The rays emitted from P1, P2 converge to p1, p2, forming

two defocus areas centered at p′1, p
′
2 respectively. p3 suffers from rays emitted from both P1 and P2. (c) There is an occluder between

the background and the main lens, and part of the rays emitted from the green point P1 are occluded by the blur occluder. There is an

ambiguity in the segmentation for these mixed points here.
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Figure 3. The top row shows the light ray intensity distributions in

defocus and occlusion cases respectively in the EPI of light field.

The bottom row shows the corresponding pixel intensity distribu-

tions in traditional 2D image.

all rays emitted from the real world such that the defocus

and occlusion cases can be well segmented in the ray space

using the LFSP.

Based on the above-mentioned analyses, we give the def-

inition of LFSP as follows.

Definition 1. The LFSP is a light ray set which contains

all rays emitted from a proximate, similar and continuous

surface in the 3D space.

Mathematically, supposing R is a proximate, similar and

continuous surface in the 3D space and the recorded light

field is L(u, v, x, y), the LFSP sR(u, v, x, y) is defined as,

sR(u, v, x, y) =

|R|
⋃

i=1

L(uPi
, vPi

, xPi
, yPi

), (1)

where L(uPi
, vPi

, xPi
, yPi

) is the recorded light field from

i-th point Pi of the surface R. | · | denotes the number of

elements in the set.

Ambiguity Elimination

The LFSP eliminates the defocus and occlusion ambi-

guity essentially. In Fig.3, the object boundary is blurred

in traditional 2D image (the bottom row) since all rays are

accumulated in a same point. However, since all rays are

recorded in the light field, the object boundary are obvi-

ously in light ray space and can be well analyzed (the top

row).

Limiting Cases

The definition above describes the general 4D LFSP and

it can be reduced to 2D spatial or angular case by taking

appropriate limits. First, considering fixing the angular di-

mensions (u, v) → (u∗, v∗), the 4D LFSP reduces to a 2D

superpixel segmentation su
∗,v∗

in the view (u∗, v∗).

Then, if the spatial dimensions (x, y) are fixed, the 4D

LFSP reduces to an angular segmentation. When the light

field is refocused to the corresponding depth, this segmen-

tation is a reference to determine the occlusion (see Fig.4).

If all points in sR(u, v, x
∗, y∗) share a same label, there

is no occlusion here and all views can be used to improve

depth estimation. If sR(u, v, x
∗, y∗) is segmented into two

or more regions, the views sharing the same label with the

central view are the unoccluded views and others are oc-

cluded views. It coincides with the light field occlusion the-

ory developed in [28].
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Figure 4. The limiting case when fixing the spatial dimensions. p

is an occlusion boundary point. (a) The light field is refocused to

the background, and only a few of views capture p. The green

rays belong to the background LFSP and the blue rays belong to

another LFSP. (b) The angular segmentation by fixing the spatial

dimensions of p. It can be seen that the blue and green regions are

occluded and unoccluded views respectively.

3.2. Evaluation metric

From the definition of LFSP, it is noticed each ray in the

LFSP ought to be refocus-invariant, i.e. the label of each

ray should be unchangeable during the refocus operation,

since the point in 3D space is unchangeable and the light
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Figure 5. An illustration of the self-similarity. The 2D slice of i-th

LFSP in the view (u−1, v0), (u0, v0) and (u1, v0) are labeled in

blue, red, green respectively. Then s
u
−1,v0

i and s
u1,v0
i are pro-

jected to the central view, and μ−1, μ1 are the projected centers.

μ0 is the center of s
u0,v0
i .

field is unchanged.

Existing evaluation metrics for superpixel segmenta-

tion focus on the boundary adherence, such as the under-

segmentation error (UE), boundary recall (BR) and achiev-

able segmentation accuracy (ASA) [16]. There is no proper

metric for the refocus-invariance. To measure the refocus-

invariance, we propose the LFSP self-similarity.

The self-similarity of the i-th LFSP SSi is defined as,

SSi =
1

Nuv − 1

∑

u,v

∥
∥
∥μH(s

u,v

i
,d,u,v,u0,v0)

− μs
u0,v0
i

∥
∥
∥
2
, (2)

where Nuv is the angular sampling number of light field.

s
u,v
i is the 2D slice of i-th LFSP in the view (u, v) and

(u0, v0) is the central view of light field. μs denotes the

position center of superpixel s and H(su,vi , d, u, v, u0, v0)
projects the 2D superpixel s

u,v
i from the view (u, v) to

(u0, v0) according to the ground truth disparity map d. For

each pixel p = (u, v, x, y)T ∈ s
u,v
i , the projected coordi-

nate p′ = (u0, v0, x
′, y′)T is defined as (in homogeneous

coordinate)
⎛

⎜
⎜
⎜
⎜
⎝

u0

v0
x′

y′

1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 u0

0 0 0 0 v0
−d(p) 0 1 0 u0d(p)

0 −d(p) 0 1 v0d(p)
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

H(s
u,v

i
,d,u,v,u0,v0)

⎛

⎜
⎜
⎜
⎜
⎝

u

v

x

y

1

⎞

⎟
⎟
⎟
⎟
⎠

(3)

We also give an intuitive explanation of the above defi-

nition. For a light field (Fig.5) with 1 × 3 angular resolu-

tion, the slices s
u−1,v0

i and s
u1,v0
i of i-th LFSP are projected

to the central view according to the ground truth disparity.

The new centers of the projected s
u−1,v0

i and s
u1,v0
i are de-

noted as μ−1 and μ1 respectively, and the center of s
u0,v0

i

is μ0. The mean of ‖μ1 − μ0‖2 and ‖μ−1 − μ0‖2 is the

self-similarity of the i-th LFSP.

For a full segmentation in the 4D light field, the LFSP

self-similarity SS is defined as the mean of all SSi,

SS =
1

K

K∑

i=1

SSi, (4)

where K is the number of LFSP.

From the definition, the LFSP self-similarity is measured

as pixel unit and a low SS value implies a high refocus-

invariance. Apart from this, since the disparity changes with

the refocus level, the LFSP self-similarity can measure the

refocus-invariance of the LFSP segmentation accurately.

4. Refocus-invariant LFSP algorithm

The essence of refocusing is shearing the pixels in each

view[24]. To make the LFSP refocus-invariant, the disparity

should be removed in the position distance measurement.

Since the disparity map for full 4D light field is hard to

estimated, in the proposed algorithm, a 2D disparity map

du0,v0 for the central view (u0, v0) of light field is obtained

using [28]. To propagate the disparity from (u0, v0) to other

views, the LFSP is modeled as a slanted plane in the dis-

parity space. Supposing πi = (Ai, Bi, Ci) assigns a plane

function to the i-th LFSP si, the disparity of each pixel

p = (u, v, x, y) ∈ si can be computed using

d̂(p, πi) =
Aix+Biy + Ci

1 +Ai(u− u0) +Bi(v − v0)
. (5)

The detailed proof can be found at [6].

Then the energy function for 4D LFSP segmentation is

defined as follows,

E(s, π, o)

=
∑

u,v

∑

p

(

Ec(p, s
u,v

s(p))+λpEp(p, s
u,v

s(p))
)

+λd

∑

p

Ed(p, πs(p))

+ λs

∑

(i,j)∈Nseg

Es(πi, πj , oi,j) + λb

∑

(p,q)∈N80

Eb(s(p), s(q)),

(6)

where s is the segmentation in full 4D light field and su,v

is the 2D slice of 4D LFSP in the view (u, v). s(p) denotes

the label that s assigns to pixel p. o records the connection

types between two neighboring LFSPs.

In Eqn.(6), the terms Ec, Ep and Ed measure the color,

position and disparity distance between the pixel p and the

superpixel center respectively. The term Es measures the

connectivity between two LFSPs in the disparity space. The

last but the most important, the term Eb measures the 2D

slice shape and the connectivity between each 2D slice

superpixel su,v , which is the core idea to make the LFSP

refocus-invariant.

The color, position and disparity energy terms are de-

fined as follows.

Ec(p, s
u,v

s(p)) =
∥
∥
∥L(p)− csu,v

s(p)

∥
∥
∥

2

2

Ep(p, s
u,v

s(p)) =
∥
∥
∥p− μs

u,v

s(p)

∥
∥
∥

2

2

Ed(p, πs(p)) =
∥
∥
∥d

u0,v0(p)− d̂(p, πs(p))
∥
∥
∥

2

2
,

(7)

where csu,v

i
and μs

u,v

i
denote the color and position centers

of the 2D slice s
u,v
i respectively. L(p) denotes the color of
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pixel p (the CIE-Lab color space is used here). The disparity

term only works for the central view image.

The smoothness term encourages the slanted planes of

neighboring LFSPs (Nseg) to be similar. Like the usage in

[35], it contains three types of LFSP boundaries, i.e., the

occlusion, hinge and co-planar, and is defined as,

Es(πi, πj , oi,j)

=

⎧

⎪⎪⎨

⎪⎪⎩

0 oi,j = occ
1

|Bi,j |

∑

p∈Bi,j
(d̂(p, πi)− d̂(p, πj))

2 oi,j = hi

1
|si∪sj |

∑

p∈si∪sj
(d̂(p, πi)− d̂(p, πj))

2 oi,j = co,

(8)

where Bi,j is the set of boundary pixels between si and sj .

There are two major functions in the boundary term, cor-

responding to two different types of neighboring system in

light field, i.e., the spatial and angular. Additionally these

two types of neighboring systems are mixed to control the

full shape of 4D LFSP. For a 4D point p = (u, v, x, y) in the

light field, supposing its disparity is d̂(p), there are 8 pixels

in its spatial and angular neighboring system respectively,

Nspa(p) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(u, v, x± 1, y + 1)

(u, v, x± 1, y − 1)

(u, v, x, y ± 1)

(u, v, x± 1, y)

Nang(p) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(u± 1, v + 1, x± d̂(p), y + d̂(p))

(u± 1, v − 1, x± d̂(p), y − d̂(p))

(u± 1, v, x± d̂(p), y)

(u, v ± 1, x, y ± d̂(p))

.

(9)

Apart from Nspa and Nang , there is also a mixed neigh-

boring system Nmix containing 64 points in both spatial and

angular domains simultaneously (see supplementary mate-

rial [6]). Fig.6 gives an illustration of these neighboring

systems.

In total, there are 80 points (N80) in p’s neighboring sys-

tem. The boundary term is defined as,

Eb(s(p), s(q)) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 s(p) = s(q)

Epens s(p) �= s(q), Npq is spatial

Epena s(p) �= s(q), Npq is angular

Epenm s(p) �= s(q), Npq is mixed,

(10)

where the penalty Epens
in the spatial neighboring system

encourages 2D slice s
u,v

s(p) to be regular, preferring straight

boundaries. The penalty Epena
in the angular neighboring

system encourages the 2D slice of LFSP to be ‘regular’ in

the epipolar plane, i.e. the pixels in a same epipolar line

share the same LFSP label. It is the core to connect each 2D

spatial slices of LFSP. Since the disparity is removed here,

this term makes the LFSP to be refocus-invariant. The third

penalty Epenm
in the mixed system encourages the spatial

2D slice of the LFSP in other views to be regular.

x

u

p1p

2p 3p 4p

5p

6p7p8p
0u

1u

2u

1u

2u

0x0 1x 0 1x

Figure 6. An illustration of neighboring system in light field. In

this EPI expression (the red lines are epipolar lines), for a pixel

p = (u0, x0), p1, p5 are the spatial neighbors, p3, p7 are the angu-

lar neighbors, and p2, p4, p6, p8 are the mixed neighbors.

Reviewing the full energy function, the refocus-

invariance is guaranteed since (1) the 2D slices of LFSP in

different views are segmented independently just using the

local 2D image information (Ec, Ep, Ed); and (2) the angu-

lar penalty (Epena
) in the boundary term encourages simi-

lar slices to connect together according to the disparity. The

initial depth estimation always follows the step of light field

refocusing and provides a good disparity map for building

angular neighboring system. Based on these designs, the

proposed LFSP algorithm is refocus-invariant.

The Block Coordinate Descent (BCD) algorithm [35] is

used to solve the Eqn.(6). The full LFSP algorithm is de-

scribed in the Algo.1. First, a 2D depth map du0,v0 is ob-

tained using [28]. Then an initial segmentation for 4D light

field is obtained. Finally, the final result is optimized by

minimizing the Eqn.(6). Since the BCD algorithm only

guarantees to converge to a local optima, a good initial value

is in need. First, an initial superpixel segmentation su0,v0 of

the central view is obtained by embedding the disparity map

du0,v0 into the SLIC framework. Then the position and dis-

parity center of each superpixel μs
u0,v0
i

and d̄su0,v0
i

are cal-

culated and are used to project su0,v0 to 4D light field by

Eqn.(3) (lines 3-9). For each non-label pixel in other views,

it is assigned as the nearest pixel’s label (lines 10-14).

5. Experimental Results

We compare the proposed LFSP segmentation with the

state-of-the-art superpixel segmentation algorithms includ-

ing the SLIC [1] and LSC [15]. Noting that, the results

of SLIC come from the vlfeat [25] library, and the code

of LSC comes from the author’s website. All three algo-

rithms are evaluated both on synthetic data and real scene

light field. For synthetic data, the HCI benchmark light field

datasets [31] are used, which consist of 4 light fields with

ground truth depth and segmentation. Each data includes

a 9 × 9 (angular resolution) light field. The real scene data

are captured by a consumer light field camera Lytro. The 4D

light field data are extracted using the LFToolbox [7]. The

quantitative evaluation contains the UE, BR, ASA [16], run-

ning time and LFSP self-similarity. All evaluations are con-

ducted on the synthetic data since the ground truth disparity

and segmentation are not available in real scene data, and
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Figure 7. Quantitative evaluation of different superpixel segmentation algorithms.

Input: The 4D light field L(u, v, x, y)
Output: The 4D LFSP segmentation s.

1 du0,v0 = DepthEstimation(L)
2 su0,v0 = SLIC(L(u0, v0, x, y), d

u0,v0)
3 for i = 1 to |su0,v0 | do

4 μs
u0,v0
i

= 1

|su0,v0
i |

∑

p∈s
u0,v0
i

p

5 d̄su0,v0
i

= 1

|su0,v0
i |

∑

p∈s
u0,v0
i

du0,v0(p)

6 for each view (u, v) do

7 s
u,v
i = H(su0,v0

i , d̄su0,v0
i

, u0, v0, u, v)

8 end

9 end

10 for each view (u, v) do

11 for non-label pixel p do

12 s(p) = argmins(q) ‖p− q‖2, q ∈ su,v

13 end

14 end

15 E(s, π, o) =
∑

u,v

∑

p
(Ec +λpEp)+λd

∑

p
Ed +λs

∑
Es +λb

∑
Eb

16 s = argmins E(s, π, o)

Algorithm 1: The LFSP segmentation algorithm.

there is no light field segmentation benchmark in real scene

data like the classical Berkeley segmentation database [18].

Unless otherwise stated, the same parameters are set for

all experiments, i.e., λp = 100, λd = 5, λs = 0.01,

λb = 5, Epens
= Epenm

= 1 and Epena
= 8. λp bal-

ances the weights between the position and color distance,

which is further divided by the superpixel size. A larger

λp leads to a more well-shaped superpixel. λd measures

the role of initial disparity. Since the state-of-the-art depth

algorithms [30, 24, 28] always over-smooth the occlusion

boundaries, it is not recommended to assign a large value

to λd. λs controls slanted plane functions and it is mainly

decided by the initial disparity map. Due to the same over-

smoothing reason, it is suggested to assign a small value

to adjust the plane function more stable. For the boundary

term, we believe the angular consistency is more important

than the spatial consistency, since the pixels in a same EPI

line describe the same point instead of different points, and

the (Epena
) ought to be assigned as a large value. For oth-

ers (Epens
, Epenm

), small values are assigned trying to en-

courage straight boundaries. λb balances the boundary ad-

herence and the shape. The boundary adherence decreases

with the increase of λb.

5.1. Synthetic Scenes

Fig.7 shows quantitative results which are average values

in the HCI segmentation datasets. It can be seen that the

proposed LFSP algorithm (red lines in Fig.7) shows com-

petitive results over the state-of-the-art algorithms (green

and blues lines in Fig.7) in all three traditional metrics. The

qualitative results are shown in Fig.10 (see [6] for more re-

sults.), from which we can see that the LFSP segmentation

can produce more regular superpixels in occlusion bound-

ary areas.

Fig.7(d) shows the running time of different algorithms.

Noting that, all algorithms are evaluated on the same desk-

top computer with a 3.4 GHz i7 CPU. Each view of light

field contains 589824 pixels (768×768 or 576×1024). The

time of SLIC and LSC are the sum of the algorithm con-

ducted on each view image of light field. It can be seen that

our un-optimized Matlab/C implementation shows great ad-

vantages over previous works with the increasing of super-

pixel size, since the light fields are treated as a whole instead

of multiple independent images in the proposed LFSP algo-

rithm, and the BCD algorithm just iteratively optimizes the

boundary pixels in the LFSP segmentation.

Additionally, to evaluate the influence of initial value

(the LFSP segmentation without BCD optimization) in the

proposed algorithm, the BR, UE, ASA of initial segmen-

tation are also plotted in Fig.7 (the black lines), showing

the effectiveness of the proposed optimization function. In

the forth column of Fig.10, the segmentation results in the

4D space are partly shown. For each local region, the first

row shows the initial results and the second row shows the

optimized results. It can be seen that the proposed LFSP op-

timization can correct the errors in initial value and preserve

the occlusion boundaries well.

Since a 2D disparity map is contained, to evaluate its in-
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fluence, we first segment the central view of light field using

the disparity map (the cyan lines in Fig.7(a),7(b),7(c)) and

compare it with the optimized segmentation. The proposed

LFSP algorithm outperforms the results using disparity map

only, since the disparities in occlusion boundaries are hard

to estimate due to the under-sampling in the angular space

[33], and the existed algorithms tend to over-smooth the oc-

clusion boundaries [5, 28]. As a result, the influence of dis-

parity maps with different qualities for the LFSP is worthy

of research in the future work.

Apart from these traditional evaluation metrics (BR, UE,

ASA), we also evaluate the LFSP using the LFSP self-

similarity. Since there is no previous work on light field

superpixel segmentation, it is hard and unfair to compare it

with the traditional 2D superpixel segmentation. We refo-

cus the light field for 4 times (the refocus levels 1 − 1
α

are

0, 0.5, 1, 1.5) and segment it. Then the LFSP self-similarity

on each segmentation is plotted in Fig.8. It can be seen that

the curves always maintain at a low level and all values are

smaller than 1 pixel, which shows well refocus-invariance

of the proposed LFSP algorithm. Additionally, the curves

are very close to each other, implying the stableness of the

algorithm.
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Figure 8. The LFSP self-similarity evaluations for the proposed

LFSP algorithm at different refocus levels.

5.2. Real Scenes

Fig.1, 11 show experimental results on real scene light

fields, captured by a Lytro camera (The superpixel size is

set as 20 here). Due to the low SNR of Lytro camera, the

SLIC and LSC can not produce reliable results from single

image of central view . However, due to the introduction

of angular neighboring system, the proposed LFSP algo-

rithm can produce more convincing results. It can be seen

that the 2D spatial slice of LFSP is more regular and has a

better boundary adherence over SLIC and LSC. Apart from

this, the occlusion boundaries in EPI space are also pre-

served well. The segmentation boundaries can always cling

the occlusion boundaries or remain the same direction with

EPI lines, showing a good LFSP self-similarity of the pro-

posed LFSP algorithm. In Fig.12, the segmentation under

(a) Similar and Non-lambertian areas (b) Non-Lambertian objects

Figure 9. Limitations. The upper insets the close-ups of blue/red

rectangles, the middle inserts the segmentation, and the bottom

show the ground truth labels. (a) In blue rectangle, there are two

horses here, however it is hard to distinguish them due to the sim-

ilar textures. In red rectangle, the boundaries of screws are hard to

be distinguished due to the inter-reflection. (b) Part of metal tube

reflects the background, showing similar textures with the back-

ground. It is difficult to connect this reflective region with others.

different refocus levels (−0.5, 0, 0.5) are demonstrated. Ob-

viously, the occlusion boundaries can always be preserved

well for different refocus levels.

5.3. Limitations

The algorithm cannot handle situations where the back-

ground and foreground share similar textures, or non-

Lambertian objects (see Fig.9). If the background and fore-

ground share similar textures, it is difficult to segment them

well using existing cues. If the objects do not satisfy the

Lambertian assumption, the color or depth cues are not re-

liable so that the boundaries of these objects can not be seg-

mented well. These two difficulties are also not solved well

in traditional algorithms.

6. Conclusions and Future Work

In the paper, we first propose the definition of light field

superpixel. The LFSP is defined in the 4D space and can

essentially eliminate the defocus and occlusion ambiguities

in traditional 2D superpixel. We then propose a refocus-

invariant LFSP segmentation algorithm. By embedding the

2D disparity map into superpixel segmentation and a clique

system with 80 (spatial, angular and mixed) neighbors in the

4D light field, the proposed algorithm outperforms the state-

of-the-arts in traditional evaluation metrics and achieves a

good refocus-invariance. In the future, we will evaluate the

influence of disparity maps with different quality for the

LFSP segmentation and explore the LFSP on more chal-

lenging non-Lambertian surfaces.
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Figure 10. The segmentation results on synthetic light field data Buddha and Papillon (the superpixel size is 20). The first column shows the

central view of input light field. The second to fourth columns show the results from SLIC, LSC and the proposed LFSP. For each region

in our results, the first row shows the initial segmentation in EPI space, and the second row shows the optimized segmentation results.

Figure 11. The segmentation results on real light field data (the superpixel size is 20). The first column shows the central view of input

light field. The second to fourth columns show the results from SLIC, LSC and the proposed LFSP. For each region in our results, the first

and second rows show the segmentation in the horizontal and vertical EPIs respectively.

Figure 12. The segmentation results under different refocus levels. The first column shows the central view of input light field. The second

to fourth columns show the results under different refocus levels (−0.5, 0, 0.5).
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