
Bidirectional Multirate Reconstruction for Temporal Modeling in Videos

Linchao Zhu Zhongwen Xu Yi Yang

CAI, University of Technology Sydney

{zhulinchao7, zhongwen.s.xu, yee.i.yang}@gmail.com

Abstract

Despite the recent success of neural networks in im-

age feature learning, a major problem in the video do-

main is the lack of sufficient labeled data for learning to

model temporal information. In this paper, we propose an

unsupervised temporal modeling method that learns from

untrimmed videos. The speed of motion varies constantly,

e.g., a man may run quickly or slowly. We therefore train

a Multirate Visual Recurrent Model (MVRM) by encod-

ing frames of a clip with different intervals. This learning

process makes the learned model more capable of dealing

with motion speed variance. Given a clip sampled from a

video, we use its past and future neighboring clips as the

temporal context, and reconstruct the two temporal tran-

sitions, i.e., present→past transition and present→future

transition, reflecting the temporal information in different

views. The proposed method exploits the two transitions si-

multaneously by incorporating a bidirectional reconstruc-

tion which consists of a backward reconstruction and a for-

ward reconstruction. We apply the proposed method to two

challenging video tasks, i.e., complex event detection and

video captioning, in which it achieves state-of-the-art per-

formance. Notably, our method generates the best single

feature for event detection with a relative improvement of

10.4% on the MEDTest-13 dataset and achieves the best

performance in video captioning across all evaluation met-

rics on the YouTube2Text dataset.

1. Introduction

Temporal information plays a key role in video repre-

sentation modeling. In earlier years, hand-crafted features,

e.g., Dense Trajectories (DT) and improved Dense Trajec-

tories (iDT) [46, 47], use local descriptors along trajecto-

ries to model video motion structures. Despite achieving

promising performance, DT and iDT are very expensive

to extract, due to the heavy computational cost of optical

flows and it takes about a week to extract iDT features for

8,000 hours of web videos using 1,000 CPU cores [49].

Deep visual features have recently achieved significantly

Fixed rate

Multiple rates

Figure 1. Frame sampling rate should vary in accordance with dif-

ferent motion speed. In this example, only the last three frames

have fast motion. The dashed arrow corresponds to a fixed sam-

pling rate, while the solid arrow corresponds to multiple rates.

better performance in image classification and detection

tasks than hand-crafted features at an efficient processing

speed [23, 14, 12]. However, learning a video representa-

tion on top of deep Convolutional Neural Networks (Con-

veNets) remains a challenging problem. Two-stream Con-

vNet [36] is groundbreaking in learning video motion struc-

tures over short video clips. Although it achieves compa-

rable performance to iDT for temporally trimmed videos,

two-stream ConvNet still needs to extract optical flows. The

heavy cost severely limits the utility of methods based on

optical flows, especially in the case of large scale video data.

Extending 2D ConvNet to 3D, C3D ConvNet has been

demonstrated to be effective for spatio-temporal modeling

and it avoids extracting optical flows. However, it can

only model temporal information in short videos, usually

of 16 frames [42]. Recurrent Neural Networks (RNNs),

particularly Long Short-Term Memory (LSTM) [16, 27]

and a modified Hierarchical Recurrent Neural Encoder

(HRNE) [28], have been used to model temporal informa-

tion in videos. A major limitation of [27] and [28] is that the

input frames are encoded with a fixed sampling rate when

training the RNNs. On the other hand, the motion speed

of videos varies even in the same video. As shown in the

Figure 1, there is almost no apparent motion in the first four

frames, but fast motion is observed in the last three frames.

The encoding rate should be correspondingly low for the

first four frames, but high for the last three, as indicated

2653

by the solid arrow. The fixed rate strategy, however, is re-

dundant for the first four frames, while important informa-

tion for the last three frames is lost. The gap between the

fixed encoding rate and motion speed variance in real world

videos may degrade performance, especially when the vari-

ance is extensive.

Notwithstanding the appealing ability of end-to-end ap-

proaches for learning a discriminative feature, such ap-

proaches require a large amount of labeled data to achieve

good performance with plausible generalization capabili-

ties. Compared to images, a large number of videos are

very expensive to label by humans. For example, the largest

public human-labeled video dataset (ActivityNet) [11] only

has 20,000 labeled videos while the ImageNet dataset has

over one million labeled instances [34]. Temporal Con-

vNet trained on the UCF-101 dataset [37] with about 10,000

temporally trimmed videos did not generalize well on tem-

porally a untrimmed dataset [50]. Targeting short video

clips, Srivastava et al. [39] proposed training a compos-

ite autoencoder in an unsupervised manner to learn video

temporal structures, essentially by predicting future frames

and reconstructing present frames. Inspired by a recent

study on neuroscience which shows that a common brain

network underlies the capacity both to remember the past

and imagine the future [35], we consider reconstructing

two temporal transitions, i.e., present→past transition and

present→future transition. Importantly, video motion speed

changes constantly in untrimmed videos and Srivastava et

al. directly used an LSTM with a single fixed sampling rate,

making it vulnerable to motion speed variance.

In this paper, we propose an unsupervised method to

learn from untrimmed videos for temporal information

modeling without the heavy cost of computing optical

flows. It makes the following two major contributions.

First, our Multirate Visual Recurrent Model adopts multiple

encoding rates, and together with the reading gate and the

updating gate in the Gated Recurrent Unit, it enables com-

munication between different encoding rates and collabo-

ratively learns a multirate representation which is robust to

motion speed variance in videos. Second, we leverage the

mutual benefit of two learning processes by reconstructing

the temporal context in two directions. The two learning

directions regularize each other, thereby reducing the over-

fitting problem. The two contributions yield a new video

representation, which achieves the best performance in two

different tasks. Note that the method proposed in [49] has

been demonstrated to be the best single feature for event de-

tection, and our method outperforms this method with a rel-

ative improvement of 10.4% and 4.5% on two challenging

datasets, i.e., MEDTest-13 and MEDTest-14 respectively.

In the video captioning task, our single feature outperforms

other state-of-the-art methods across all evaluation metrics,

most of which use multiple features. It is worthwhile men-

tioning that in very rare cases, one method can outperform

all others for video captioning over all evaluation metrics.

These results demonstrate the effectiveness of the proposed

method.

2. Related Work

Research efforts to improve visual representations for

videos have been ongoing. Local features such as HOF [25]

and MBH [8] extracted along spatio-temporal tracklets

have been used as motion descriptors in the Dense Tra-

jectories feature [46] and its variants [47]. However, it

is notoriously inefficient to extract hand-crafted features

like improved Dense Trajectories (iDT) [47, 49], mostly

due to the dense sampling nature of local descriptors and

the time-consuming extraction of optical flows. On the

other hand, the classification performance of state-of-the-art

hand-crafted features has been surpassed by many methods

based on neural networks in web video classification and

action recognition tasks [49, 48].

Convolutional Networks for video classification. One

way to use ConvNets for video classification is to per-

form temporal pooling over convolutional activations. Ng et

al. [27] proposed learning a global video representation by

using max pooling over the last convolutional layer across

video frames. Wang et al. [48] aggregated ConvNet features

along the tracklets obtained from iDT. Xu et al. [49] applied

VLAD encoding [18] over ConvNet activations and found

that the encoding methods are superior to mean pooling.

The other common solution is to feed multiple frames as in-

put to ConvNets. Karpathy et al. [19] proposed a convolu-

tional temporal fusion network, but it is only marginally bet-

ter than the single frame baseline. Tran et al. [42] avoided

the extraction of optical flows by utilizing 3D ConvNets to

model motion information. Simonyan and Zisserman [36]

took optical flows as the flow image input to a ConvNet, and

this two-stream network has much better performance than

the previous networks on action recognition.

Recurrent Networks for video classification. Ng et

al. [27] and Donahue et al. [10] investigated the modeling of

temporal structures in videos with Long Short-Term Mem-

ory (LSTM) [16]. However, even with five-layer LSTMs,

trained on millions of videos, they do not show promis-

ing performance compared to ConvNets [27]. Patraucean et

al. [31] used a spatio-temporal autoencoder to model video

sequences through optical flow prediction and reconstruc-

tion of the next frame. Ballas et al. [4] used a Convolutional

Gated Recurrent Unit (ConvGRU) which leverage informa-

tion from different spatial levels of the activations. Srivas-

tava et al. [39] used LSTM to model video sequences in

an unsupervised way. In this work, we utilize the RNNs

on video representation learning, improving the representa-

tion by being aware of the multirate nature of video content.

Moreover, the temporal consistency between frames in the

2654

neighborhood is incorporated into the networks in an un-

supervised way, providing richer training information and

creating opportunities to learn from abundant untrimmed

videos.

Video captioning. Video captioning has emerged as a pop-

ular task in recent years, since it bridges visual understand-

ing and natural language description. Conditioned on the

visual context, RNNs produce one word per step to generate

captions for videos. Venugopalan et al. [44] used a stacked

sequence to sequence (seq2seq) [40] model, in which an

LSTM is used as a video sequence encoder and the other

LSTM serves as a caption decoder. Yao et al. [51] incorpo-

rated the temporal attention mechanism in the description

decoding stage. Pan et al. [28] proposed using a hierarchi-

cal LSTM to model videos sequences, while Yu et al. [52]

used a hierarchical GRU network to model the structure of

captions. In this work, we demonstrate that the strong video

representation learned in our model improves the video cap-

tioning task, confirming the generalization ability of our

features.

3. Multirate Visual Recurrent Models

In this section, we introduce our approach for video se-

quence modeling. We first review the structure of Gated

Recurrent Unit (GRU) and extend the GRU to a multirate

version. The model architecture for unsupervised represen-

tation learning is then introduced, which is followed by task

specific models for event detection and video captioning. In

the model description, we omit all bias terms in order to

increase readability.

3.1. Multirate Gated Recurrent Unit

Gated Recurrent Unit. At each step t, a GRU cell takes

a frame representation xt and previous state ht−1 as inputs

and generates a hidden state ht and an output ot which are

calculated by,

rt = σ(Urxt +Vrht−1),

zt = σ(Uzxt +Vzht−1),

h̄t = tanh(Uh̄xt +Vh̄(rt ⊙ ht−1)),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̄t,

ot = Woht,

(1)

where xt is the input, rt is the reset gate, zt is the update

gate, ht is the proposed state, h̄t is the internal state, σ is

the sigmoid activation function, U∗ and V∗ are weight ma-

trices, and ⊙ is element-wise multiplication. The output ot

is calculated by a linear transformation from the state ht.

We denote the whole process as:

ht,ot = GRU(xt,ht−1), (2)

and when it has iterated S steps, we can obtain the state of

the last step hS .

+

+

U xV ht-1

Slow Fast

Fast Slow

Figure 2. We illustrate the two modes in the mGRU. In the slow to

fast mode, the state matrices V∗ are block upper-triangular matri-

ces and in the fast to slow mode, they are block lower-triangular

matrices.

Multirate Gated Recurrent Unit (mGRU). Inspired by

clockwork RNN [22], we extend the GRU cell to a mul-

tirate version. The clockwork RNN uses delayed connec-

tions for inputs and inter-connections between steps to cap-

ture longer dependencies. Unlike traditional RNNs where

all units in the states follow the protocol in Eq. 1, states and

weights in the clockwork RNN are divided into groups to

model information at different rates. We divide state ht into

k groups, and each group gi has a clock period Ti, where

i ∈ {1, . . . , k}. Ti can be arbitrary numbers, and we em-

pirically use k = 3 and set T1, T2, T3 = 1, 3, 6. Faster

groups (with smaller Ti) take inputs more frequently than

slower groups, and the slower module skips more inputs.

Formally, at each step t, matrices of the group satisfying

(t MOD Ti) = 0 are activated and are used to calculate the

next state, which is

rit = σ(Ui
rxt +

∑k

j=1 V
i,j
r h

j
t−1),

zit = σ(Ui
zxt +

∑k

j=1 V
i,j
z h

j
t−1),

h̄i
t = tanh(Ui

h̄
xt +

∑k

j=1 V
i,j

h̄
(rit ⊙ h

j
t−1)),

hi
t = (1− zit)⊙ hi

t−1 + zit ⊙ h̄i
t,

(3)

where the state weight matrices V∗ are divided into k
block-rows and each block-row is partitioned into k block-

columns. V
i,j
∗ denotes the sub-matrix in block-row i and

block-column j. The input weight matrices U∗ are divided

k block-rows and Ui
∗

denotes the weights in block-row i
and

∑k

j=1 V
i,j
∗ h

j
t−1 =

{

∑i

j=1 V
i,j
∗ h

j
t−1, Fast → slow mode

∑k

j=i V
i,j
∗ h

j
t−1, Slow → fast mode

(4)

Two modes can be used for state transition. In the slow to

fast mode, states of faster groups consider previous slower

states, thus the faster states incorporate information not only

at the current speed but also information that is slower and

2655

more coarse. The intuition for the fast to slow mode is that

when the slow mode is activated, it can take advantage of

the information already encoded in the faster states. The

two modes are illustrated in Figure 2. Empirically, we use

the fast to slow mode in our model as it performed better in

the preliminary experiments.

If (t MOD Ti) 6= 0, the previous state is directly passed

over to the next state,

hi
t = hi

t−1. (5)

Figure 3 illustrates the state iteration process. Note that

not all previous modules are considered to calculate the next

state at each step, thus fewer parameters will be used and the

training will be more efficient.

3.2. Unsupervised Video Sequence Reconstruction

Video sequences are highly correlated to their neighbor-

ing context clips. We use the idea of context reconstruction

for video sequence modeling. The similar methods have

been successfully applied for language modeling and other

language tasks [26, 21]. In the unsupervised training pro-

cess, we follow the classic sequence-to-sequence (seq2seq)

model [40] where an encoder encodes a sequence of in-

puts and passes the last state to the decoder for target se-

quence generation. In our scenario, the mGRU encoder

takes frame-level features extracted from the pre-trained

convolutional models as inputs and generates the state at

each step which will be attended by the decoders. The state

of the last step of the encoder is passed to the decoder, i.e.,

hdec
0 = henc

S . Two decoders are used to predict the context

sequences of the inputs, i.e., reconstructing the frame-level

representations of the previous sequence and next sequence.

Decoder. We use the seq2seq model with attention mecha-

nism to model video temporal structures via context recon-

struction. We denote that Y = (y1,y2, . . . ,yn) is the pre-

vious sequence of input sequence X, and Z = (z1, . . . , zn)
is the next sequence. The decoder is a GRU conditioned

on the encoder outputs oenc
1,...,S and the last step state henc

S of

the encoder. We use the attention mechanism at each step

to help the decoder to decide which frames in the input se-

quence might be related to the next frame reconstruction.

At step t, the decoder φ generates the prediction odec
t by

calculating,

yattn
t = Linear(yt,at−1),

hdec
t ,oattn

t = GRU(yattn
t ,hdec

t−1),

eit = vTtanh(Wheh
dec
t +Woeo

enc
i),

ait = exp(eit) /
∑S

j=1 exp(e
j
t),

at =
∑S

i=1 a
i
to

enc
i ,

odec
t = Linear(oattn

t ,at),

(6)

Input 0 Input 1 Input 2 Input 3

Group 1

(T1=1)

Group 2

(T2=2)

Group 3

(T3=4)

Input 4

Figure 3. Unrolled mGRU. In the example, the state is divided into

three groups and the slow to fast mode is shown. At each step t,

groups satisfying (t MOD Ti) = 0 are activated (cells with black

border). For example, at step 2, group 1 and group 2 are activated.

The activated groups take the frame input and previous states to

calculate the next states. For those that are inactivated, we simply

pass the previous states to the next step. Group 1 is the fastest and

group 3 is the slowest with larger Ti. The slow to fast mode is

the mode by which the slower groups pass the states to the faster

groups.

where Linear(a,b) = Waa + Wbb, ait is the normal-

ized attention weight for encoder output oenc
i and at is the

weighted average of the encoder outputs. We use two de-

coders that do not share parameters: one for the past se-

quence reconstruction and the other for the future sequence

reconstruction (Figure 4). The decoders are trained to min-

imize the reconstruction loss of two sequences, which is

∑

t

ℓ(φ(y<t,o
enc
1,...,S ,h

enc
S ; θ),yt)+

∑

t′

ℓ(φ(z<t′ ,o
enc
1,...,S ,h

enc
S ; θ′), zt′).

(7)

We choose the Huber loss for regression due to its ro-

bustness following Girshick [12],

ℓ(y, ȳ) =











1

2
(y − ȳ)2 for |y − ȳ| ≤ δ,

δ |y − ȳ| −
1

2
δ2 otherwise.

(8)

We set δ = 0.5 in all experiments.

For the past reconstruction, we reverse the input order as

well as the target order to minimize information lag [40].

The two decoders are trained with the encoder via back-

propagation, and we regularize the network by randomly

dropping one decoder for each batch. As we have two de-

coders in our model, each decoder will have the probability

of being chosen for training of 0.5 (Figure. 4).

During unsupervised training, we uniformly sample

video frames and extract frame-level features from convo-

lutional models. We set the sequence length to K, i.e., the

encoder takes K frames as inputs, while the decoders recon-

struct previous K frames and next K frames. We randomly

2656

sample a temporal window of consecutive 3K frames (3

segments) during training. If the video length is less than

3K, we pad zeros for each segment.

3.3. Complex Event Detection

We validate the unsupervised learned features on the

task of complex event detection. We choose the TRECVID

Multimedia Event Detection (MED) task as it is more dy-

namic and complex compared to the action recognition

task, in which the target action duration is short and usu-

ally lasts only seconds. As the features from the un-

supervised training are not discriminative, i.e., label in-

formation has not been applied during training, we fur-

ther train the encoder for video classification. We use

the mGRU encoder to encode the video frames and take

the last hidden state in the encoder for classification. We

do not apply losses at each step, e.g., the LSTM model

in [27], as the video data in our task is untrimmed, which

is more noisy and redundant. We use the network struc-

ture of FC(1024)-ReLU-Dropout(0.5)-FC(1024)-ReLU-

Dropout(0.5)-FC(class num+1)-Softmax. Since there are

background videos which do not belong to any target

events, we add another class for these videos.

During supervised training, we first initialize the weights

of the encoder with the weights pre-trained via unsuper-

vised context reconstruction. For each batch, instead of uni-

formly sampling videos within the training set, we keep the

ratio of the number of positive and background videos to

1 : 2. We bias the mini-batch sampling because of the im-

balance between the positive and negative examples.

During inference, the encoder generates multirate states

at each step, and there are several ways to pool the states

to obtain a global video representation. One simple ap-

proach is to average the outputs, and the obtained global

video representation is then classified with a Linear SVM.

The other way is to encode the outputs with an encoding

method. Xu et al. [49] found that Vector of Locally Aggre-

gated Descriptors (VLAD) [18] encoding outperforms av-

erage pooling and Fisher Vectors [32] over ConvNets acti-

vations by a large margin on the MED task. We thus apply

the VLAD encoding method to encode the RNN represen-

tations.

Given inputs X = {x1,x2, . . . ,xN} and centers C =
{c1, . . . , cK} which are calculated by the k-means algo-

rithm on sampled inputs, for each k ∈ {1, . . . ,K}, we have,

uk =
∑

i:Nearest(xi)=ck

xi − ck, (9)

where xi is assigned to the center ck if it is the nearest cen-

ter. Concatenating uk over all K centers, we obtain the

feature vector of size DK where D is the dimension of

xi. Normalization methods are used to improve the encod-

ing performance. Power normalization, often signed square

5678

4 3 2

1

8765

9

9 10 11

4 3 2

10 11 12

<GO>

<GO>

Present Past

Present Future

Figure 4. The model architecture of unsupervised video represen-

tation learning. In this model, two decoders are used to predict

surrounding contexts by reconstructing previous frames and next

frame sequences. The “<GO>” input, which is a zero vector, is

used at step 0 in the decoder. During training, one of the two de-

coders is used with a probability of 0.5 for reconstruction.

rooting (SSR), is usually used to convert each element xi

into sign(xi)
√

|xi|. The intra-normalization method nor-

malizes representations for each center, followed by the ℓ2
normalization for the whole feature vector [32]. The final

normalized representation is classified with a Linear SVM.

Note that the states in mGRU are divided into groups, we

thus encode the state of the three different scales indepen-

dently. We combine the three scores by average fusion.

3.4. Video Captioning

We also demonstrate the generalization ability of our

proposed video representation on the video captioning task.

In video captioning, an encoder is used to encode video

representations and a decoder is used to generate video de-

scriptions. We follow the basic captioning decoding pro-

cess. Given a video sequence X and a description sequence

Y = {y1, . . . , yN}, where each word is represented by a

one-hot vector and a one-of-K (K is the vocabulary size)

embedding is used in the decoder input to represent a dis-

crete word with a continuous vector, the overall objective is

to maximize the log-likelihood of the generated sequence,

max
θ

N
∑

t=1

log Pr(yt|y<t,X;θ). (10)

Softmax activation is used on the decoder output to obtain

the probability of word yt. The attention mechanism (Eq. 6)

is used in both the input and output of the decoder.

4. Experiments

We show the results of our experiments on complex

event detection and video captioning tasks. We implement

our model using the TensorFlow framework [3].

2657

4.1. Complex Event Detection

4.1.1 Dataset

We collect approximately 220,000 videos without label

information from TRECVID MED data, which excludes

videos in MEDTest-13 and MEDTest-14, for unsupervised

training. The average length of the collected videos is 130

seconds with a total duration of more than 8,000 hours.

We use the challenging MED datasets with labels,

namely, TRECVID MEDTest-13 100Ex [1] and TRECVID

MEDTest-14 100Ex [2] for video classification1. There are

20 events in each dataset, 10 of which overlap. It consists

of approximately 100 positive exemplars for each event in

the training set, and 5,000 negative exemplars. In the test-

ing set, there are about 23,000 videos and the total duration

in each collection is approximately 1,240 hours. The aver-

age video length is 120 seconds. These videos are tempo-

rally untrimmed YouTube videos of various resolutions and

quality. We use the mean Average Precision (mAP) as the

performance metric following the NIST standard [1, 2].

4.1.2 Model Specification

For both unsupervised training and classification, we uni-

formly sample video frames at the rate of 1 FPS and extract

features for each frame from GoogLeNet with the Batch

Normalization [17] pre-trained on ImageNet. Following

standard image preprocessing procedures, the shorter edges

of frames are rescaled to 256 and we crop the image to

224 × 224. We use activations after the last pooling layer

and obtain representations with length 1,024. There are 20

classes in the MEDTest-13 and MEDTest-14 datasets, thus

with the background class, we have 21 classes in total. In

the training stage, we set sequence length K to 30 and pad

zeros if the video has fewer than 30 frames. During infer-

ence, we take the whole video as input and use 150 steps.

Training details. We use the following settings in all ex-

periments unless otherwise stated. The model is optimized

with ADAM [20], and we fix the learning rate at 1× 10−4

and clip the global gradients at norm 10. We use a single

RNN layer for both the encoder and decoder, and the cell

size is set to 1,024. We set the attention size to 50 and reg-

ularize the network by using Dropout [38] in the input and

output layer [33]. We also add Dropout when the decoder

copy state from the encoder and all dropout probability is

set to 0.5. Weights are initialized with Glorot uniform ini-

tialization [13] and weight decay of 1× 10−4 is applied for

regularization. In the supervised training, we initialize the

weights of the encoder using the learned weights during un-

supervised learning, and the same sequence length is used

as in the unsupervised training stage.

1Development data is not updated for TRECVID MED 15 and

TRECVID MED 16 competition.

Methods MEDTest-13 MEDTest-14

GoogLeNet 32.0 25.1

mGRU 39.6 32.2

Table 1. Comparison between GoogLeNet features and our mGRU

model. Average pooling is used for both models. The result

shows our feature representation significantly outperforms the

GoogLeNet feature.

Methods MEDTest-13 MEDTest-14

GoogLeNet 42.0 33.6

mGRU 44.5 37.3

Table 2. Comparison between GoogLeNet and mGRU models

when VLAD encoding is used to aggregate frame-level features.

4.1.3 Results

Average pooling. For the GoogLeNet baseline, we aver-

age frame-level features and use a Linear SVM for clas-

sification. For our model, we first train an unsupervised

encoder-decoder model with mGRU and fine-tune the en-

coder with label information. To make a fair comparison

with the GoogLeNet baseline, we extract outputs of the

mGRU encoder at each step and average them to obtain a

global representation for classification. Note that both fea-

ture representations have same dimensions and we empiri-

cally set C = 1 for both of the linear classifiers. The result

is shown in Table 1 and shows that our model with tem-

poral structure learning is able to encode valuable temporal

information for classification.

VLAD Encoding. We now show that VLAD encoding is

useful for aggregating RNN representations. We compare

our method with GoogLeNet features using VLAD encod-

ing. Following [49], we set the number of k-means centers

to 256 and the dimension of PCA is 256. Three scales are

learned at each step for our mGRU model. We divide the

state into three segments and each sub-state is individually

aggregated by VLAD. Note that each encoded representa-

tion has the same feature vector length as the GoogLeNet

model, and we use late fusion to combine the scores of the

three scales. The results in Table 2 show that our mGRU

model outperforms GoogLeNet features when encoded by

VLAD. It also shows that VLAD encoding outperforms av-

erage pooling for RNN representations. Our model also

achieves state-of-the-art performance on the MEDTest-13

and MEDTest-14 100Ex datasets.

4.1.4 Ablation Study

We compare several variants in the unsupervised training,

and show the performance of different components. The

results are shown in Table 3. We obtain features from the

2658

Methods MEDTest-13 MEDTest-14

mGRU w/o attention 32.7 27.5

mGRU w/o context 37.1 30.1

mGRU w/o multirate 36.5 29.3

mGRU (full) 37.4 30.6

Table 3. Comparison between mGRU and other variants in the un-

supervised training stage. Detailed discussion can be found in text.

Methods MEDTest-13 MEDTest-14

mGRU (random) 38.3 29.5

mGRU (pre-trained) 39.6 32.2

Table 4. Comparison between models which have the same struc-

ture but different initialization. This shows that good initialization

enables better features to be learned.

unsupervised model by extracting states from the encoder

at each step, which are then averaged to obtain a global

video representation. The results show that the represen-

tation learning from unsupervised training without discrim-

inative information also achieves good results.

Attention. We compare our model with a model without the

attention mechanism, where temporal attention is not used

and the decoder is forced to perform reconstruction based

only on the last encoder state, i.e., “mGRU w/o attention”

in Table 3. The results show that the attention mechanism is

important for learning good video representations and also

helps the learning process of the encoder.

Context. In a model without context reconstruction, i.e.,

only one decoder is used (autoencoder), neither past nor

future context information is considered, i.e., “mGRU w/o

context” in Table 3. The results show that with context pre-

diction, the encoder has to consider temporal information

around the video clip, which models the temporal structures

in a better way.

Multirate. We also show the benefit of using mGRU by

comparing it with the basic GRU, i.e., “mGRU w/o mul-

tirate” in Table 3. Note that the mGRU model has fewer

parameters but better performance. It shows that an mGRU

that encodes multirate video information is capable of learn-

ing better representations from long, noisy sequences.

Pre-training. We now show the advantages of the unsuper-

vised pre-training process by comparing an encoder with

random initialization with the same encoder whose weights

are initialized by the unsupervised model. The result is

shown in Table 4 and demonstrates that the unsupervised

training process is beneficial to video classification. It in-

corporates context information in the encoder, which is an

important cue for the video classification task.

Models MEDTest-13 MEDTest-14

IDT + FV [49] 34.0 27.6

IDT + skip + FV [24] 36.3 29.0

VGG + RBF [53] - 35.0

C3D [42] * 36.9 31.4

VGG16 + VLAD [49] - 33.2

NI-SVM2 [5] 39.2 34.4

VGG16+LCD+VLAD [49] 40.3 35.7

LSTM autoencoder [39] * 38.2 31.0

GoogLeNet + VLAD * 42.0 33.6

Our method 44.5 37.3

Table 5. Comparison with other methods. We achieve state-of-

the-art performance on both MEDTest-13 and MEDTest-14 100Ex

datasets. * denotes that the model is implemented by ourselves.

4.1.5 Comparison with the State-of-the-art

We compare our model with other models and the re-

sults are shown in Table 5. Our single model achieves

the state-of-the-art performance on both the MEDTest-13

and MEDTest-14 100Ex settings compared with the per-

formances of other single models. We report the C3D re-

sult by using the pre-trained model [42] and we set the

length of the input short clip to 16. Features are averaged

across clips which are classified with a Linear SVM. Our

model with VLAD encoding outperforms previous state-of-

the-art results with 4.2% on MEDTest-13 100Ex and 1.6%

on MEDTest-14 100Ex.

4.2. Video Captioning

We now validate our model on the video captioning task.

Our single model outperforms previous state-of-the-art sin-

gle models across all metrics.

4.2.1 Dataset

We use the YouTube2Text video corpus [6] to evaluate our

model on the video captioning task. The dataset has 1,970

video clips with an average duration of 9 seconds. The

original dataset contains multi-lingual descriptions cover-

ing various domains, e.g., sports, music, animals. Follow-

ing [45], we use English descriptions only and split the

dataset into training, validation and testing sets containing

1,200, 100, 670 video clips respectively. In this setting,

there are 80,839 descriptions in total with about 41 sen-

tences per video clip. The vocabulary size we use is 12,596

including <GO>, <PAD>, <EOS>, <UNK>.

We evaluate the performance of our method on the test

set using the evaluation script provided by [7] and the

results are returned by the evaluation server. We report

BLEU [30], METEOR [9] and CIDEr [43] scores for com-

parison with other models. We stick with a single rule dur-

2659

Methods B@1 B@2 B@3 B@4 M C

GRU 79.46 67.52 57.98 47.14 32.31 72.46

mGRU 79.42 67.79 58.32 48.12 32.79 73.21

mGRU+

pre-train
80.76 69.49 60.03 49.45 33.39 75.45

Table 6. Comparison between different models on YouTube2Text

dataset. GoogLeNet features are used as frame-level representa-

tions. B, M, C are short for BLEU, METEOR, CIDEr.

Methods B@1 B@2 B@3 B@4 M C

GRU 80.88 70.15 61.08 51.06 33.48 79.16

mGRU 82.03 71.41 62.38 52.49 33.91 78.41

mGRU+

pre-train
82.49 72.16 63.30 53.82 34.45 81.20

Table 7. Comparison between different models on YouTube2Text

dataset. ResNet-200 features are used as frame-level representa-

tions. B, M, C are short for BLEU, METEOR, CIDEr.

ing model selection, namely we choose the model with the

highest METEOR score on the validation set.

4.2.2 Model Specification

The video length in the YouTube2Text dataset is short, thus

we uniformly sample frames at a higher frame rate of 15

FPS. The sequence length is set to 50 and we use the default

hyper-parameters in the last experiment. We use two differ-

ent convolutional features for the video captioning task, i.e.,

GoogLeNet features and ResNet-200 features [15]. We use

beam search during decoding by default and set the beam

size to 5 following [52] in all experiments. Attention size is

set to 100 empirically.

4.2.3 Results

We first use GoogLeNet features and the result is shown

in Table 6. We compare our mGRU with GRU which

shows that mGRU outperforms GRU on all metrics except

BLEU@1. However, the difference is only 0.04%. We ini-

tialize the mGRU encoder via unsupervised context learn-

ing and the result shows that with good initialization, per-

formance is improved by more than 1.0% on the BLEU

and CIDEr scores and 0.6% on the METEOR score com-

pared with random initialization. We also utilize the recent

ResNet-200 network as a convolutional model. We use the

pre-trained model and follow the same image preprocess-

ing method. The result of using ResNet-200 is shown in

Table 7 and demonstrates that our MVRM method not only

works better than GRU on different tasks, but also works

better on different convolutional models. Additionally, we

can improve all the metrics with ResNet-200 network.

Methods BLEU@4 METEOR CIDEr

S2VT [44] - 29.20 -

Temporal attention [51] 41.92 29.60 51.67
GoogLeNet+

Bi-GRU-RCN1 [4]
48.42 31.70 65.38

GoogLeNet+

Bi-GRU-RCN2 [4]
43.26 31.60 68.01

VGG+LSTM-E [29] 40.20 29.50 -

C3D+LSTM-E [29] 41.70 29.90 -
GoogLeNet+HRNE+

Attention [28]
43.80 33.10 -

VGG+p-RNN [52]∗ 44.30 31.10 62.10

C3D+p-RNN [52]∗ 47.40 30.30 53.60

GoogLeNet+MVRM 49.45 33.39 75.45

Table 8. Comparison with other models without fusion. ∗ de-

notes that the model is trained with different settings ([52] used

the train+val data for training).

4.2.4 Comparison with the State-of-the-art

We compare our methods with other models on the

YouTube2Text dataset. Results are shown in Table 8.

“S2VT” [44] is the first model to use a general encoder-

decoder model for video captioning. “Temporal Atten-

tion” [51] uses the temporal attention mechanism on the

video frames to obtain better results. “Bi-GRU-RCN” [51]

uses a ConvGRU to encode activations from different con-

volutional layers. “LSTM-E” [29] uses embedding layers to

jointly project visual and text features. Our MVRM method

has similar performance to [28], but with the pre-training

stage, we outperform [28] in all metrics. Some methods

fuse additional motion features like C3D [42] features, e.g.,

Pan et al. [28] obtained 33.9% on METEOR after combing

multiple features. With ResNet-200, we can obtain 34.45%

on METEOR.

5. Conclusion

In this paper, we propose a Multirate Visual Recurrent

Model to learn multirate representations for videos. We

model the video temporal structure via context reconstruc-

tion, and show that unsupervised training is important for

learning good representations for both video classification

and video captioning. The proposed method achieves state-

of-the-art performance on two tasks. In the future, we

will investigate the generality of the video representation

in other challenging tasks, e.g., video temporal localiza-

tion [11] and video question answering [54, 41]

Acknowledgments. Our work is partially supported by the Data

to Decisions Cooperative Research Centre (www.d2dcrc.com.au),

and Google Faculty Award, and an Australian Government Re-

search Training Program Scholarship. We gratefully acknowledge

the support of NVIDIA Corporation with the donation of the TI-

TAN X (Pascal) GPU used for this research.

2660

References

[1] TRECVID MED 13. http://nist.gov/itl/iad/

mig/med13.cfm, 2013. 6

[2] TRECVID MED 14. http://nist.gov/itl/iad/

mig/med14.cfm, 2014. 6

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. TensorFlow: A system for large-scale machine

learning. In OSDI, 2016. 5

[4] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper

into convolutional networks for learning video representa-

tions. ICLR, 2016. 2, 8

[5] X. Chang, Y. Yang, E. P. Xing, and Y.-L. Yu. Complex event

detection using semantic saliency and nearly-isotonic svm.

In ICML, 2015. 7

[6] D. L. Chen and W. B. Dolan. Collecting highly parallel data

for paraphrase evaluation. In ACL, 2011. 7

[7] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta,

P. Dollár, and C. L. Zitnick. Microsoft COCO cap-

tions: Data collection and evaluation server. arXiv preprint

arXiv:1504.00325, 2015. 7

[8] N. Dalal, B. Triggs, and C. Schmid. Human detection using

oriented histograms of flow and appearance. In ECCV, 2006.

2

[9] M. Denkowski and A. Lavie. Meteor Universal: Language

specific translation evaluation for any target language. In

EACL, 2014. 7

[10] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In CVPR, 2015. 2

[11] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C.

Niebles. ActivityNet: A large-scale video benchmark for

human activity understanding. In CVPR, 2015. 2, 8

[12] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 4

[13] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

2010. 6

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1

[15] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016. 8

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997. 1, 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 6

[18] H. Jegou, M. Douze, C. Schmid, and P. Pérez. Aggregating

local descriptors into a compact image representation. In

CVPR, 2010. 2, 5

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 2

[20] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 6

[21] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,

A. Torralba, and S. Fidler. Skip-thought vectors. In NIPS,

2015. 4

[22] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A

clockwork RNN. In ICML, 2014. 3

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[24] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Be-

yond Gaussian pyramid: Multi-skip feature stacking for ac-

tion recognition. In CVPR, 2015. 7

[25] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In CVPR,

2008. 2

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. In ICLR,

2013. 4

[27] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In CVPR, 2015.

1, 2, 5

[28] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical

recurrent neural encoder for video representation with appli-

cation to captioning. In CVPR, 2016. 1, 3, 8

[29] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly modeling

embedding and translation to bridge video and language. In

CVPR, 2016. 8

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: A

method for automatic evaluation of machine translation. In

ACL, 2002. 7

[31] V. Pătrăucean, A. Handa, and R. Cipolla. Spatio-temporal

video autoencoder with differentiable memory. In ICLR

Workshop, 2016. 2

[32] F. Perronnin, J. Sánchez, and T. Mensink. Improving the

Fisher kernel for large-scale image classification. In ECCV,

2010. 5

[33] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.

Dropout improves recurrent neural networks for handwriting

recognition. In ICFHR, 2014. 6

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 115(3):211–252, 2015. 2

[35] D. L. Schacter, D. R. Addis, D. Hassabis, V. C. Martin, R. N.

Spreng, and K. K. Szpunar. The future of memory: Remem-

bering, imagining, and the brain. Neuron, 76(4):677–694,

2012. 2

[36] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1,

2

[37] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012. 2

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. JMLR, 15(1):1929–1958, 2014. 6

2661

http://nist.gov/itl/iad/mig/med13.cfm
http://nist.gov/itl/iad/mig/med13.cfm
http://nist.gov/itl/iad/mig/med14.cfm
http://nist.gov/itl/iad/mig/med14.cfm

[39] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsu-

pervised learning of video representations using LSTMs. In

ICML, 2015. 2, 7

[40] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In NIPS, 2014. 3, 4

[41] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Ur-

tasun, and S. Fidler. MovieQA: Understanding stories in

movies through question-answering. In CVPR, 2016. 8

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3D convolutional net-

works. In ICCV, 2015. 1, 2, 7, 8

[43] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. CIDEr:

Consensus-based image description evaluation. In CVPR,

2015. 7

[44] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,

T. Darrell, and K. Saenko. Sequence to sequence – video

to text. In ICCV, 2015. 3, 8

[45] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,

R. Mooney, and K. Saenko. Translating videos to natural

language using deep recurrent neural networks. In NAACL

HLT, 2015. 7

[46] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In CVPR, 2011. 1, 2

[47] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 1, 2

[48] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

2015. 2

[49] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative

CNN video representation for event detection. In CVPR,

2015. 1, 2, 5, 6, 7

[50] Z. Xu, L. Zhu, Y. Yang, and A. G. Hauptmann. UTS-CMU

at THUMOS 2015. THUMOS Challenge, 2015. 2

[51] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. In ICCV, 2015. 3, 8

[52] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video

paragraph captioning using hierarchical recurrent neural net-

works. In CVPR, 2016. 3, 8

[53] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and

R. Salakhutdinov. Exploiting image-trained CNN architec-

tures for unconstrained video classification. In BMVC, 2015.

7

[54] L. Zhu, Z. Xu, Y. Yang, and A. G. Hauptmann. Uncovering

temporal context for video question and answering. arXiv

preprint arXiv:1511.04670, 2015. 8

2662

