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Abstract

Multi-label image classification is a fundamental but

challenging task in computer vision. Great progress has

been achieved by exploiting semantic relations between la-

bels in recent years. However, conventional approaches

are unable to model the underlying spatial relations be-

tween labels in multi-label images, because spatial anno-

tations of the labels are generally not provided. In this pa-

per, we propose a unified deep neural network that exploits

both semantic and spatial relations between labels with only

image-level supervisions. Given a multi-label image, our

proposed Spatial Regularization Network (SRN) generates

attention maps for all labels and captures the underlying

relations between them via learnable convolutions. By ag-

gregating the regularized classification results with original

results by a ResNet-101 network, the classification perfor-

mance can be consistently improved. The whole deep neural

network is trained end-to-end with only image-level anno-

tations, thus requires no additional efforts on image anno-

tations. Extensive evaluations on 3 public datasets with dif-

ferent types of labels show that our approach significantly

outperforms state-of-the-arts and has strong generalization

capability. Analysis of the learned SRN model demonstrates

that it can effectively capture both semantic and spatial re-

lations of labels for improving classification performance.

1. Introduction

Multi-label image classification is an important task in

computer vision with various applications, such as scene

recognition [4, 30, 31], multi-object recognition [25, 19,

18], human attribute recognition [24], etc. Compared to

single-label image classification [6, 7, 12], which has been

extensively studied, multi-label problem is more practical

and challenging, as real-world images are usually associ-

ated with multiple labels, such as objects or attributes.

Binary relevance method [34] is an easy way to extend

single-label algorithms to solve multi-label classification,

which simply trains one binary classifier for each label.
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Figure 1. Illustration of using our proposed Spatial Regularization

Net (SRN) for improving multi-label image classification. The

SRN learns semantic and spatial label relations from label atten-

tion maps with only image-level supervisions.

Various loss functions have been investigated in [11]. To

cope with the problem that labels may relate to different

visual regions over the whole image, proposal-based ap-

proaches [38] are proposed to transform multi-label clas-

sification problem into multiple single-label classification

tasks. However, these modifications of existing single-label

algorithms ignored semantic relations of labels.

Recent progress on multi-label image classification

mainly focused on capturing semantic relations between

labels. Such relations or dependency can be modeled by

probabilistic graphical models [23, 22], structured inference

neural network [16], or Recurrent Neural Networks (RNNs)

[36]. Despite the great improvements achieved by exploit-

ing semantic relations, existing methods cannot capture spa-

tial relations of labels, because their spatial locations are not

annotated for training. In this paper, we propose to capture

both semantic and spatial relations of labels by a Spatial

Regularization Network in a unified framework (Figure 1),

which can be trained end-to-end with only image-level su-

pervisions, thus requires no additional annotations.
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Deep Convolution Neural Networks (CNNs) [21, 33, 32,

13] have achieved great success on single-label image clas-

sification in recent years. Because of their strong capability

in learning discriminative features, deep CNN models pre-

trained on large datasets can be easily transferred to solve

other tasks and boost their performance. However, the fea-

ture representations might not be optimal for images with

multiple labels, since a ground truth label might semanti-

cally relate to only a small region of the image. The diverse

and complex contents in multi-label images make it difficult

to learn effective feature representations and classifiers.

Inspired by recent success of attention mechanism in

many vision tasks [40, 43, 15], we propose a deep neu-

ral network for multi-label classification, which consists of

a sub-network, Spatial Regularization Net (SRN), to learn

spatial regularizations between labels with only image-level

supervisions. The SRN learns an attention map for each la-

bel, which associates related image regions to each label.

By performing learnable convolutions on the attention maps

of all labels, the SRN captures the underlying semantic and

spatial relations between labels and act as spatial regular-

izations for multi-label classification.

The contribution of this paper is as follows. 1) We pro-

pose an end-to-end deep neural network for multi-label im-

age classification, which exploits both semantic and spa-

tial relations of labels by training learnable convolutions

on the attention maps of labels. Such relations are learned

with only image-level supervisions. Investigation and vi-

sualization of learned models demonstrate that our model

can effectively capture semantic and spatial relations of la-

bels. 2) Our proposed algorithm has great generalization

capability and works well on data with different types of

labels. We comprehensively evaluate our method on 3 pub-

licly available datasets, NUS-WIDE [5] (81 concept labels),

MS-COCO [25] (80 object labels), and WIDER-Attribute

[24] (14 human attribute labels), showing significant im-

provements over state-of-the-art approaches.

2. Related Work

Multi-label classification has applications in many areas,

such as document topic categorization [29, 10], music an-

notation and retrieval [35], scene recognition [4], and gene

functional analysis [2]. Comprehensive reviews for general

multi-label classification methods can be found in [34, 44].

In this work, we focus on multi-label image classification

methods with deep learning techniques.

A simple way of adapting existing single-label methods

to multi-label is to learn an independent classifier for each

label [34]. Recent success of deeply-learned features [21]

for single-label image classification have boosted the accu-

racy of multi-label classification. Based on such deep fea-

tures, Gong et al. [11] evaluated various loss functions and

found that weighted approximate ranking loss worked best

with CNNs. Proposal-based approaches showed promising

performance in object detection [8]. Similar ideas have also

been explored for multi-label image classification. Wei et

al. [38] converted multi-label problems into a set of multi-

class problems over region proposals. Classification results

for the whole images were obtained by max-pooling label

confidences over all proposals. Yang et al. [42] treated im-

ages as a bag of instances/proposals, and solved a multi-

instance learning problem. The above approaches ignored

label relations in multi-label images.

Approaches that learn to capture label relations were also

proposed. Read et al. [28] extended the binary relevance

method by training a chain of binary classifiers, where each

classifier makes predictions based on both image features

and previously predicted labels. A more common way

of modeling label relations is to use probabilistic graphi-

cal models [20]. There were also methods on determining

structures of the label relation graphs. Xue et al. [41] di-

rectly thresholded the label correlation matrix to obtain the

label structure. Li et al. [23] used a maximum spanning

tree over mutual information matrix of labels to create the

graph. Li et al. [22] proposed to learn image-dependent

conditional label structures base on Graphical Lasso frame-

work [27]. Recently, deep neural networks have also been

explored for learning label relations. Hu et al. [16] pro-

posed a structured inference neural network that transfers

predictions across multiple concept layers. Wang et al. [36]

treated multi-label classification as a sequential prediction

problem, and solved label dependency by Recurrent Neu-

ral Networks (RNN). Although classification accuracy has

been greatly improved by learning semantic relations of la-

bels, the above mentioned approaches fail to explore the un-

derlying spatial relations between labels.

Attention mechanism was proven to be beneficial in

many vision tasks, such as visual tracking [3], object recog-

nition [26, 1], image captioning [40], image question an-

swering [43], and segmentation [15]. The spatial atten-

tion mechanism adaptively focuses on related regions of the

image when the deep networks are trained with spatially-

related labels. In this paper, we utilize attention mechanism

for improving multi-label image classification, which cap-

tures the underlying spatial relations of labels and provides

spatial regularization for the final classification results.

3. Methodology

We propose a deep neural network for multi-label classi-

fication, which utilizes image-level supervisions for learn-

ing spatial regularizations on multiple labels. The overall

framework of our approach is shown in Figure 2. The main

net has the same network structure as ResNet-101 [13].

The proposed Spatial Regularization Net (SRN) takes vi-

sual features from the main net as inputs and learns to reg-

ularize spatial relations between labels. Such relations are

exploited based on the learned attention maps for the multi-

ple labels. Label confidences from both main net and SRN

are aggregated to generate final classification confidences.

The whole network is a unified framework and is trained in

an end-to-end manner.
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Figure 2. Overall framework of our approach. (Top) The main net follows the structure of ResNet-101 and learns one independent classifier

for each label. “Res-2048” stands for one ResNet building block with 2048 output channels. (Bottom) The proposed SRN captures spatial

and semantic relations of labels with attention mechanism. Dashed lines indicate weakly-supervised pre-training for attention maps.

3.1. Main Net for Multilabel Classification

The main net follows the structure of ResNet-101 [13]

which is composed of repetitive building blocks with dif-

ferent output dimensions. Specifically, the block structure

proposed in [14] is adopted. The 14 × 14 feature map (for

224 × 224 input images) from layer “res4b22 relu” of the

main net is used as input for SRN, which is of sufficient res-

olution to learn spatial regularizations in our experiments.

Let I denote an input image with ground-truth labels y =
[y1, y2, ..., yC ]T , where yl is a binary indicator. yl = 1 if

image I is tagged with label l, and yl = 0 otherwise. C is

the number of all possible labels in the dataset. The main

net conducts binary classification for each of the C labels,

X = fcnn(I; θcnn), X ∈ R
14×14×1024, (1)

ŷcls = fcls(X; θcls), ŷcls ∈ R
C , (2)

where X is the feature map from layer “res4b22 relu”,

ŷcls = [ŷ1cls · · · , ŷ
C
cls]

T is predicted label confidences by

the main net. Prediction errors of the main net is measured

based on ŷcls and ground-truth labels y.

The proposed SRN is composed of two successive sub-

networks, where the first sub-network fatt(X; θatt) learns

label attention maps with image-level supervisions (Sec-

tion 3.2), and the second sub-network fsr(U; θsr) captures

spatial regularizations of labels (Section 3.3) based on the

learned label attention maps.

3.2. Label Attention from Imagelevel Supervisions

Multi-label image is composed of multiple image re-

gions that are semantically related to different labels. Al-

though the region locations are generally not provided by

the image-level supervisions, when predicting one label’s

existence, it is desirable that more attention is paid to the

related regions. In our work, our neural network learn

to predict such related image regions for each label with

image-level supervisions using the attention mechanism.

The learned attention maps could then be used to learn spa-

tial regularizations for the labels.

Given input visual features X ∈ R
14×14×1024 from layer

“res4b22 relu” of the main net, we aim to automatically

generate label attention values for each individual labels,

Z = fatt(X; θatt), Z ∈ R
14×14×C , (3)

where Z is the unnormalized label attention values by

fatt(·) with each channel corresponding to one label. Fol-

lowing [40], Z is spatially normalized with the softmax

function to obtain the final label attention maps A,

ali,j =
exp (zli,j)∑
i,j exp (zli,j)

, A ∈ R
14×14×C , (4)

where zli,j and ali,j represent the unormalized and normal-

ized attention values at (i, j) for label l. Intuitively, if label

l is tagged to the input image, the image regions related to

it should be assigned with higher attention values. The at-

tention estimator fatt(·) is modeled as 3 convolution layers

with 512 kernels of 1×1, 512 kernels of 3×3, and C kernels

of 1×1, respectively. The ReLU nonlinearity operations are

performed following the first two convolution layers.

Since ground-truth annotations of attention maps are not

available, fatt(X; θatt) is learned with only image-level

multi-label supervisions. Let xi,j ∈ R
1024 denote the vi-

sual feature vector at location (i, j) of X. In the original

ResNet, the visual features is averaged across all spatial lo-

cations for classification as 1

7×7

∑
i,j xi,j . Since we expect

the attention map Al for each label l to have higher val-

ues at the label-related regions, and
∑

i,j a
l
i,j = 1 for all l,

the attention maps could be used to weightedly average the
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visual features X for each label l as,

vl =
∑

i,j

xi,ja
l
i,j , vl ∈ R

1024. (5)

Compared with the original averaged visual features shared

by all labels, the weightedly-averaged visual feature vector

vl is more related to image regions corresponding to label

l. Each such feature vector is then used to learn a linear

classifier for estimating label l’s confidence,

ŷlatt = W lvl + bl, (6)

where Wl and bl are classifier parameters for label l. For

all labels, ŷatt = [ŷ1att, · · · , ŷ
C
att]

T . Using only the image-

level supervisions y for training, the attention estimator pa-

rameters are learned by minimizing the cross-entropy loss

between ŷatt and y (see the dashed lines in Figure 2).

The attention estimator network fatt(·) can effectively

learn attention maps for each label. Learned attention maps

for an image are illustrated in Figure 3. It shows that the

weakly-supervised attention model could effectively cap-

ture related visual regions for each label. For example,

“sunglass” focuses on the face region, while “longPants”

pays more attention to legs. The negative labels also focus

on reasonable regions, for example, “Hat” tries to find hat

in the region of head.

For efficient learning of the attention maps, recall that

we have
∑

i,j a
l
i,j = 1, and Eq. (6) can be rewritten as

ŷlatt =
∑

i,j

ali,j(W
lxi,j + bl). (7)

This equation can be viewed as applying label-specific lin-

ear classifier at every location of the feature map X, and

then spatially aggregating label confidences based on at-

tention maps. In our implementation, the linear classifiers

are modeled as a convolution layer with C kernels of size

1 × 1 (“conv1” in Figure 2). The output of this layer is

a confidence map S ∈ R
14×14×C , where its lth channel

is Sl = W l ∗ X + bl, with ∗ denoting convolution opera-

tion. The label attention map A and confidence map S are

element-wisely multiplied, and then spatially sum-pooled

to obtain the label confidence vector ŷatt. This formulation

leads to an easy-to-implement network for learning label at-

tentions, and generates confidence maps for weighting the

attention maps in SRN.

3.3. Spatial Regularizations from Attention Maps

Label attention maps encode rich spatial information of

labels. They can be used to generate more robust spatial

regularizations for labels. However, the attention map for

each label always sum up to 1 (see Figure 3), which may

highlight wrong locations. Learning from label-not-existing

attention maps might lead to wrong spatial regularizations.

Therefore, we propose to learn spatial regularizations from

weighted attention maps U ∈ R
14×14×C ,

U = σ(S) ◦A, (8)
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Figure 3. Examples of learned attention maps from WIDER-

Attribute dataset. Labels in red are ground-truth labels. “Weighted

Attention” is the attention map weighted by corresponding label

confidence (Eq. (8)).

where σ(x) = 1/(1+e−x) is the sigmoid function that con-

verts label confidences S to the range [0, 1], and ◦ indicates

element-wise multiplication. The weighted attention maps

U encode both local confidences of attention and global vis-

ibility of each label, as shown in Figure 3.

Given the weighted attention maps U, a label regulariza-

tion function is required to estimate the label confidences

based on label spatial information from U,

ŷsr = fsr(U; θsr), ŷsr ∈ R
C , (9)

where ŷsr = [ŷ1sr, ŷ
2

sr, ..., ŷ
C
sr]

T is predicted label confi-

dences by the label regularization function.

Since the weighted attention maps for all labels are spa-

tially aligned, it is easy to capture their relative relations

with stacked convolution operations. The convolutions

should have large enough receptive fields to capture the

complex spatial relations between the labels. However, a

naive implementation might be problematic. If we only use

one convolution layer with 2048 filters of size 14×14, then

the total number of additional parameters would be 0.4C
million. For a dataset that has 80 different labels, the ac-

tual number of additional parameter would be 32 million,

In contrast, the original ResNet-101 only contains approxi-

mately 40 million parameters. Such large number of addi-

tional parameters would make the network difficult to train.

We propose to decouple semantic relation learning and

spatial relation learning in different convolution layers. The
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intuition is that one label may only semantically relate to

a small number of other labels, and measuring spatial re-

lations with those unrelated attention maps is unnecessary.

fsr(U; θsr) is implemented as three convolution layers with

ReLU nonlinearity followed by one fully-connected layer

as shown in Figure 4. The first two layers capture seman-

tic relations of labels with 2 layers of 1 × 1 convolutions,

and the third layer explores spatial relations using 2048

14 × 14 kernels. The filters of the third convolution layer

are grouped, with each group of 4 kernels corresponding to

one feature channel of the input feature map. The 4 ker-

nels in each group convolve the same feature channel inde-

pendently. Different kernels in one group capture different

spatial relations of semantically related labels. Experimen-

tal results show that the proposed SRN provides effective

regularization to the classification results based on seman-

tic and spatial relations of labels, with only about 6 million

additional parameters.

3.4. Overall Network and Training Scheme

The final label confidences are aggregation of the outputs

of main net and SRN, ŷ = αŷcls + (1− α)ŷsr, where α is

a weighting factor. Though the factor can also be learned,

we fix α = 0.5 and do not observe performance drop. The

whole network is trained with the cross-entropy loss with

the ground truth labels y,

Floss(y, ŷ) =

C∑

l=1

yl log σ(ŷl) + (1− yl) log(1− σ(ŷl)).

(10)

We train the network in multiple steps. First, we fine-

tune only the main net on the target dataset, which is pre-

trained on 1000-classification task of ImageNet dataset [6].

Both fcnn(I; θcnn) and fcls(X; θcls) are learned with cross-

entropy loss Floss(y, ŷcls). Secondly, we fix fcnn and

fcls, and focus on training fatt(X; θatt) and “conv1” (see

dashed lines in Figure 2) with loss Floss(y, ŷatt). Thirdly,

we train fsr(U; θsr) with cross-entropy loss Floss(y, ŷsr),
by fixing all other sub-networks. Finally, the whole network

is jointly fine-tuned with loss Floss(y, ŷ) + Floss(y, ŷatt).

Our deep neural network is implemented with Caffe li-

brary [17]. To avoid over-fitting, we adopt image augmenta-

tion strategies suggested in [37]. The input images are first

resized to 256 × 256, and then cropped at four corners and

the center. The width and height of cropped patches are ran-

domly chosen from the set {256, 224, 192, 168, 128}. Fi-

nally, the cropped images are all resized to 224 × 224. We

employ stochastic gradient descend algorithm for training,

with a batch size of 96, a momentum of 0.9, and weight de-

cay of 0.0005. The initial learning rate is set as 10−3, and

decreased to 1/10 of the previous value whenever validation

loss gets saturated, until 10−5. We train our model with

4 NVIDIA Titan X GPUs. For MS-COCO, training costs

about 16 hours for all steps. For testing, we simply resize

all images to 224×224 and conduct single-crop evaluation.
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Attention Map: U

conv2
512 filters

1x1xC
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1x1x512

conv4

ˆ
sry

2048 filters
14x14x1

Group: 512

14

14

14

14
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14

14

Figure 4. Detailed network structure of fsr(·) for learning spatial

regularizations from weighted attention maps. The first two layers

(“conv2” and “conv3”) are convolution layers with multi-channel

filters, while, “conv4” is composed of single-channel filters. Ev-

ery 4 filters convolve with the same feature channel by “conv3” to

limit the parameter size.

4. Experiments

Our approach is evaluated with three benchmark datasets

with different types of labels: NUS-WIDE [5] with 81

concept labels, MS-COCO [25] with 80 object labels, and

WIDER-Attribute [24] with 14 human attribute labels. Ex-

perimental results show that our approach significantly out-

performs state-of-the-arts on all the three datasets 1, and has

strong generalization capability to different types of labels.

Analysis of the learned deep models demonstrates that our

proposed approach can effectively capture both semantic

and spatial relations of labels.

4.1. Evaluation Metrics and Compared Methods

Evaluation Metrics. A comprehensive study of

evaluation metrics for multi-label classification is pre-

sented in [39]. We employ macro/micro precision,

macro/micro recall, macro/micro F1-measure, and Mean

Average Precision (mAP) for performance comparison. For

precision/recall/F1-measure, if the estimated label confi-

dences for any label are greater than 0.5, the labels are

predicted as positive. Macro precision (denoted as “P-C”)

is evaluated by averaging per-class precisions, while micro

precision (denoted as “P-O”) is an overall measure which

counts true predictions for all images over all classes. Sim-

ilarly, we can also evaluate macro/micro recall (“R-C”/“R-

O”) and macro/micro F1-measure (“F1-C”/“F1-O”). Mean

Average Precision is the mean value of per-class average

precisions. The above metrics do not require a fixed num-

ber of labels for each image. Generally, the mAP, F1-C

and F1-O are of more importance. To fairly compare with

state-of-the-arts, we also evaluate precision, recall and F1-

measure under the constraints that each image is predicted

with top-3 labels. To obtain such top-3 labels in our ap-

proach, the 3 labels with highest confidences are obtained

1Code and trained models available at https://github.com/
zhufengx/SRN_multilabel.
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Method
All top-3

mAP F1-C P-C R-C F1-O P-O R-O F1-C P-C R-C F1-O P-O R-O

KNN [5] - - - - - - - 24.3 32.6 19.3 47.6 42.9 53.4

WARP [11] - - - - - - - 33.5 31.7 35.6 53.9 48.6 60.5

CNN-RNN [36] - - - - - - - 34.7 40.5 30.4 55.2 49.9 61.7

ResNet-101 [13] 59.8 55.7 65.8 51.9 72.5 75.9 69.5 47.0 46.9 56.8 61.7 55.8 69.1

ResNet-107 59.5 55.6 65.4 52.2 72.6 75.5 70.0 46.9 46.7 56.8 61.8 55.9 69.2

ResNet-101-semantic 60.1 54.9 69.3 48.6 72.6 76.9 68.8 47.0 46.4 55.3 61.8 55.9 69.2

ResNet-SRN-att 61.8 56.9 67.5 52.5 73.2 76.5 70.1 47.7 47.4 57.7 62.2 56.2 69.6

ResNet-SRN 62.0 58.5 65.2 55.8 73.4 75.5 71.5 48.9 48.2 58.9 62.2 56.2 69.6

Table 1. Quantitative results by our proposed ResNet-SRN and compared methods on NUS-WIDE dataset. “mAP”, “F1-C”, “P-C”, and

“R-C” are evaluated for each class before averaging. “F1-O”, “P-O”, and “R-O” are averaged over all sample-label pairs.

for each image even if their confidence values are lower than

0.5. However, we argue that outputting a variable number

of labels for each image is more practical for real-world ap-

plications. Therefore, we report both our results with and

without the top-3 label constraint.

Compared Methods. For NUS-WIDE and MS-COCO

datasets, we compare with state-of-the-art methods on the

datasets including CNN-RNN [36], WARP [11], and KNN

[5]. CNN-RNN explored semantic relations of labels,

while other methods did not. For WIDER-Attribute dataset,

RCNN [8], R*CNN [9], and DHC [24] are compared.

Both R*CNN and DHC explored spatial context surround-

ing human bounding boxes. For our approach (denoted as

“ResNet-SRN”), one variant is also explored, which learns

spatial regularizations from unweighted attention maps A

instead of U to evaluate the necessity of weighting the at-

tention maps. It is denoted as “ResNet-SRN-att”.

We also design three baseline methods to further vali-

date the effectiveness of our proposed Spatial Regulariza-

tion Net. The first baseline is the original ResNet-101 (de-

noted as “ResNet-101”) fine-tuned on each of the datasets.

For the second baseline, since the proposed SRN has about

6 million additional parameters compared with ResNet-101,

which is approximately equal to two ResNet building blocks

with 2048 output feature channels, we add two such resid-

ual blocks following the last block of ResNet-101 (the layer

“res5c relu”) to create a “ResNet-107” model. For the third

baseline, we investigate learning semantic relations of la-

bels based on initial label confidences by ResNet-101. The

initial confidences are concatenated with the visual features

from the “pool5” layer to encode label relations. Two 2048-

neuron and one C-neuron fully-connected layers try to cap-

ture label semantic relations from the concatenated features

to generate final label confidences. We refer this model as

“ResNet-101-semantic” in our experiments.

4.2. Experimental Results

NUS-WIDE [5]. This dataset contains 269,648 images

and associated tags from Flickr. The dataset is manually

annotated by 81 concepts, with 2.4 concept labels per im-

age on average. The concepts include events/activities (e.g.,

“swimming”, “running”), scene/location (e.g., “airport”,

“ocean”), objects (e.g., “animal”, “car”). We trained our

approach to predict the 81 concept labels. Official train/test

split is used, i.e. 161,789 images for training/validation, and

107,859 image for testing.

Experimental results on this dataset are shown in Ta-

ble 1. Our proposed ResNet-SRN and its variant ResNet-

SRN-att outperform all state-of-the-arts and baseline mod-

els. With the advances of deep network structures, even

our baseline ResNet-101 has achieved better performance

than existing state-of-the-arts. It mainly results from the

learning capability of ResNet-101 with deep learnable lay-

ers. When adding more layers to match the parameter size

of our proposed SRN, ResNet-107 shows very close perfor-

mance with ResNet-101, which suggests that the capacity of

ResNet-101 is sufficient on NUS-WIDE, and adding more

parameters does not lead to performance increase. Utilizing

predicted labels as context (ResNet-101-semantic) dose not

improve performance on this dataset. In contrast, by explor-

ing spatial and semantic relations of labels, our proposed

ResNet-SRN model outperforms all baseline methods by ∼
2 percent. It indicates that learned spatial relations of labels

provide good regularizations for multi-label image classi-

fication. The performance gain of our ResNet-SRN over

ResNet-SRN-att suggests that the weighted attention map

U is more informative for learning spatial regularizations

than the unweighted attention map A.

Forcing the algorithm to predict a fixed number (k = 3
is proposed in state-of-the-art methods) of labels for each

image may not fully reflect the algorithm’s actual perfor-

mance. When removing the constraint (Section 4.1), we can

observe significant performance improvements (e.g., from

48.9 to 58.5 for the F1-C metric of ResNet-SRN).

MS-COCO [25]. This dataset is primarily built for ob-

ject recognition task in the context of scene understanding.

The training set is composed of 82,783 images, which con-

tain common objects in the scenes. The objects are catego-

rized into 80 classes, with about 2.9 object labels per image.

Since the ground-truth labels of test set is not available, we

evaluated all methods on the validation set (40,504 images).

The number of labels for each image varies considerably on

this MS-COCO. Following [36], when evaluating with top-

3 label predictions, we filtered out labels with probability
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Method
All top-3

mAP F1-C P-C R-C F1-O P-O R-O F1-C P-C R-C F1-O P-O R-O

WARP [11] - - - - - - - 55.7 59.3 52.5 60.7 59.8 61.4

CNN-RNN [36] - - - - - - - 60.4 66.0 55.6 67.8 69.2 66.4

ResNet-101 [13] 75.2 69.5 80.8 63.4 74.4 82.2 68.0 65.9 84.3 57.4 71.7 86.5 61.3

ResNet-107 75.4 69.7 80.9 63.7 74.5 82.1 68.2 66.1 84.4 57.6 71.8 86.4 61.4

ResNet-101-semantic 75.5 69.9 81.1 63.8 74.8 82.1 68.6 66.2 84.3 57.7 72.0 86.3 61.8

ResNet-SRN-att 76.1 70.0 81.2 63.3 75.0 84.1 67.7 66.3 85.8 57.5 72.1 88.1 61.1

ResNet-SRN 77.1 71.2 81.6 65.4 75.8 82.7 69.9 67.4 85.2 58.8 72.9 87.4 62.5

Table 2. Quantitative results by our proposed ResNet-SRN and compared methods on MS-COCO validation set. “mAP”, “F1-C”, “P-C”,

and “R-C” are evaluated for each class before averaging. “F1-O”, “P-O”, and “R-O” are averaged over all sample-label pairs.

lower than 0.5 for each image, thus the image may return

less than k = 3 labels.

Quantitative results on MS-COCO are presented in Ta-

ble 2. The comparison results are similar to those on NUS-

WIDE. Based on ResNet-101 network, all baseline mod-

els perform better than state-of-the-art approaches. ResNet-

107 shows a minor improvement over ResNet-101. Due to

more labels per image (3.5 labels on MS-COCO compared

with 2.4 labels on NUS-WIDE), exploring label semantic

relations by ResNet-101-semantic is helpful, but the im-

provement is limited (e.g., from 75.2 to 75.5 in terms of

mAP). Both ResNet-SRN and ResNet-SRN-att show supe-

rior performance over baseline models, while the spatial

regularizations learned from weighted attention maps per-

form better (e.g., ResNet-SRN boosts mAP to 77.1, as com-

pared with 76.1 of ResNet-SRN-att).

WIDER-Attribute [24]. This dataset contains 13,789

images and 57,524 human bounding boxes. The task is to

predict existence of 14 human attributes for each annotated

person. Each image is also labeled by an event label from 30

event classes for context learning. For our approach, human

is cropped from the full image based on bounding box an-

notations, and then used for training and testing. The train-

ing/validation and testing set contain 28,340 and 29,177

person, respectively. WIDER-Attribute also contains un-

specified labels. We treated these unspecified labels as neg-

ative labels during training. Unspecified labels are excluded

from evaluation in testing following the settings of [24].

Experimental results are shown in Table 3. All ResNet

models outperform state-of-the-arts, R-CNN [8], R*CNN

[9], and DHC [24], and our proposed ResNet-SRN per-

forms best. It is important to note that R*CNN and DHC

explore visual context surrounding the target human by tak-

ing full images and human bounding boxes as input. Event

labels associated with each image are also used for training

in DHC. In contrast, our approach and baselines only uti-

lize cropped image patches without using the event labels.

Nevertheless, the ResNet-SRN and ResNet-SRN-att show

consistent improvement over state-of-the-arts and baseline

methods. This result indicates that the proposed SRN could

capture the spatial relations of human attributes with image-

level supervisions, and these learned spatial regularizations

could help predicting human attributes.

Method
All

mAP F1-C F1-O

R-CNN [8] 80.0 - -

R*CNN [9] 80.5 - -

DHC [24] 81.3 - -

ResNet-101 [13] 85.0 74.7 80.4

ResNet-107 85.0 74.8 80.6

ResNet-101-semantic 85.1 74.8 80.5

ResNet-SRN-att 85.4 74.9 80.8

ResNet-SRN 86.2 75.9 81.3

Table 3. Quantitative results by our proposed ResNet-SRN and

compared methods on WIDER-Attribute dataset. “mAP”and “F1-

C” are evaluated for each class before averaging. “F1-O” is aver-

aged over all sample-label pairs.

4.3. Visualization and Analysis

The effectiveness of our approach has been quantita-

tively evaluated in Table 1, 2, and 3, we visualize and ana-

lyze the learned neurons from the conv4 layer of our SRN

to illustrate its capability of learning spatial regularizations

for labels. We observe that the learned neurons capture two

types of label spatial information. One type of neurons cap-

ture the spatial locations of individual labels, while the other

type of neurons are only activated when several labels have

specific relative position patterns.

We calculate correlations between learned neuron re-

sponses and label locations in images, and find some neu-

ron highly correlates to individual label’s spatial locations.

In Figure 5, we show two such examples. In (a), the re-

sponse of neuron #425 of “conv4” in SRN highly correlates

the vertical location of the label “longHair” in WIDER-

Attribute dataset. In (b) the activation of neuron #1199 of

“conv4” highly correlates the vertical location of the label

“flag”. It demonstrates that the two neurons focuses on spa-

tial locations of certain labels.

In Figure 6, we show three images from WIDER-

Attribute dataset that have highest activations on neuron

#786 of “conv4” in SRN. The images have common labels

(“Male”, “longSleeve”, “formal”, “longPants”) with sim-

ilar relative label positions. It suggests that this neuron is

trained to capture semantic and spatial relations of the four

labels, and favors specific relative positions between them.
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WIDER-Attribute, Neuron: #425 of Ȑconv4ȑ, Label: ȐlongHairȑ
Correlation With Vertical Location: 0.72

activation: 6.14

activation: 5.53

activation: 5.06

activation: 0.87

activation: 0.87

activation: 0.87

activation: -3.66

activation: -3.96

activation: -4.20

Low
Activation

High
Activation

... ...

... ...

... ...

NUS-WIDE, Neuron: #1199 of Ȑconv4ȑ, Label: Ȑflagsȑ
Correlation With Vertical Location: 0.71

activation: 6.28

activation: 5.83

activation: 5.64

activation: 1.35

activation: 0.76

activation: 0.68

activation: -4.15

activation: -4.18

activation: -4.31

Low
Activation

High
Activation

... ...

... ...

... ...

(a) (b)

Figure 5. Correlation between neuron activations and label locations. These two neurons are sensitive to the location variations of corre-

sponding labels.

activation: 6.19 Male longSleeve formal longPants sunglass

Male longSleeve formal longPants sunglass

Male longSleeve formal longPants sunglass

activation: 4.64

activation: 4.57

Figure 6. Images with top-3 activations for neuron #786 of

“conv4” from WIDER-Attribute dataset. True positive labels are

marked in red. Strong spatial and semantic relations between the

four labels (“Male”, “longSleeve”, “formal”, “longPants”) are

captured by neuron.

We also analyzed AP improvements for all classes in

COCO. As shown in Figure 7, our approach is more effec-

tive for classes having more co-existing labels in the same

images so that spatial relations can be better utilized to reg-

ularize the results. For the class toaster, it was not improved

much because of its limited number of training samples.

5. Conclusion

In this paper, we aim to improve multi-label image clas-

sification by exploring spatial relations of labels. This is

achieved by learning attention maps for all labels with only

image-level supervisions, and then capturing both seman-

tic and spatial relations of labels base on weighted attention

Figure 7. Top: improvement in AP for each class in COCO. Bot-

tom: average number of concurrent labels for true positive images

of each class. All sorted according to improvements in AP.

maps. Extensive evaluations on NUS-WIDE, MS-COCO,

and WIDER-Attribute datasets show that our proposed Spa-

tial Regularization Net significantly outperforms state-of-

the-arts. Visualization of learned models also shows that

our approach could effectively capture both semantic and

spatial relations for labels.
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