

Introduction

- \succ This is a room layout estimation method featured by:
 - (1) Semantic Transfer;
 - (2) Physics Inspired Optimization
- > PIO's basic idea is to formulate some phenomena observed in ST features into mechanics concepts.

Semantic Transfer

- > As a discriminative model, it integrates the relationship between room layout and scene clutter into an FCN;
- \succ As an architecture, it enjoys the benefit of end-to-end training;
- \succ As a training strategy, it provides better network initialization and allows us to train a very deep network under unbalanced data distribution;

Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation Hao Zhao, Ming Lu, Anbang Yao, Yiwen Guo, Yurong Chen, Li Zhang

Feature Quality Visualization

> This figure illustrates that STN extracts reliable features under various circumstances:

More about Semantic Transfer

- \succ Feature embedding visualization;
- \succ Transfer weights visualization;

Physics Inspired Optimization

Results

Qualitative results on LSUN test (with videos):

 \succ Quantitative results: ut

IEEE 2017 Conference on Computer Vision and Pattern Recognition

> The two core concepts behind PIO: Approximation and Composition

http://lsun.cs.princeton.edu/leaderboard/index_2016.html#roomlayo

https://sites.google.com/view/st-pio/