

Binary Coding for Partial Action Analysis with Limited Observation Ratios

Jie Qin^{1,2}, Li Liu^{3,4}, Ling Shao⁴, Bingbing Ni⁵, Chen Chen⁶, Fumin Shen⁷ and Yunhong Wang¹

¹Beihang University ⁵Shanghai Jiao Tong University

²ETH Zurich ³Malong Technologies Co., Ltd. ⁶University of Central Florida ⁷University of Elec

nologies Co., Ltd. ⁴University of East Anglia ⁷University of Electronic Science and Technology of China

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Motivation:

- Most action recognition approaches analyze after-the-fact actions. However, capturing complete actions is often difficult due to *occlusions*, *interruptions*, *etc*.
- Partial action recognition (PAR) has a wide range of applications in intelligent surveillance, smart homes, retrieval systems, etc.
- > Existing PAR methods are:
- Lack of generality, e.g., requiring sufficient observations, partial observations from the beginning, known observation ratios (ORs);
- Lack of scalability, i.e., developed based on high-dimensional video data, involving unacceptable memory usage and computational costs for real-time applications.

Contributions:

- (1) Perform partial action analysis in a more general and practical scenario, where a *short* temporal video segment of *unknown* ORs, observed during *any* period of the complete execution is utilized for action analysis.
- (2) Propose a joint learning framework, which collaboratively addresses feature reconstruction and binary coding, based on discrete alternating optimization.
- (3) Present our approach in both supervised and unsupervised fashions and systematically evaluate it on four action benchmarks in terms of three tasks, i.e., partial action retrieval, recognition and prediction.

Approach:

> Feature reconstruction for partial actions:

Partial actions:
$$\mathbf{X} = [\mathbf{x}_1^1, \dots, \mathbf{x}_1^M, \dots, \mathbf{x}_i^1, \dots, \mathbf{x}_i^m, \dots, \mathbf{x}_i^M, \dots, \mathbf{x}_N^M]$$

Reconstruction function: ψ g(·)

Full actions: $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_1, \dots, \mathbf{y}_i, \dots, \mathbf{y}_i, \dots, \mathbf{y}_i, \dots, \mathbf{y}_N, \dots, \mathbf{y}_N]$
 $M \text{ times}$
 $M \text{ times}$

Objective: $\min_{\mathbf{W}} \sum_{i=1}^{N} \sum_{m=1}^{M} ||\mathbf{y}_i - \mathbf{g}(\mathbf{x}_i^m)||_2^2 = \sum_{i=1}^{N} \sum_{m=1}^{M} ||\mathbf{y}_i - \mathbf{W}^T \mathbf{x}_i^m||_2^2$

> Discrete binary coding:

$$\min_{\mathbf{B},\mathbf{P}} \sum_{i,j=1}^{N} \sum_{m,n=1}^{M} |\mathbf{b}_i^m - \mathbf{b}_j^n||_2^2, \text{s.t.} \mathbf{b} = \text{sign}(\mathbf{P}^T \mathbf{g}(\mathbf{x}))$$

$$\text{emantic} \quad \text{affinity:} \quad s_{i,j}^{m,n} = \begin{cases} 1.5, & \text{if } i = j \text{ and } Label_i^m = Label_j^n, \\ 1, & \text{if } i \neq j \text{ and } Label_i^m = Label_j^n, \\ -1, & \text{otherwise} \end{cases}$$

> Joint learning:

Discrete alternating optimization without any relaxation

Experiments:

- Dataset&Feature: HMDB51/UCF101&C3D; UT-Interaction&Cuboids+BoW
- Partial actions: 16/32-frame segments from full action videos (OR < 30%)

Partial action retrieval:

	Method		MAP (%)	Precision @radius2(%)	Precision @rank50 (%)	Training time (s)	Test coding time (s)	0.6	* * *	O.5 O.5 O.5 O.5 O.5 O.5 O.5 O.5
Single-Modality Binary Coding Methods	Supervised	SDH [46]	29.80	0.11	37.92	477.17	3.8×10^{-6}	0.4		SD 0.4 * CCA-ITQ AGH
		FastHash [21]	47.46	0.001	54.05	1.56×10^3	9.3×10^{-4}	MAP 0.3		© 0.3 * SePH
		KSH [34]	5.10	0.095	8.77	1.17×10^3	3.4×10^{-6}	2 0		SCM → CVH
		CCA-ITQ [8]	34.71	2.58	42.61	8.90	2.9×10^{-6}	0.2	* * * * *	© 02 CMSSH ———————————————————————————————————
	Unsupervised	AGH [33]	3.08	1.27	2.10	35.58	3.8×10^{-6}	0.1		0.1
		PCA-ITQ [8]	2.94	< 0.001	2.44	7.62	4.4×10^{-6}	ا و	*	32 48 64 80 96
	Supervised	SePH [22]	50.20	23.42	54.18	2.14×10^3	3.7×10^{-6}	32	2 48 64 80 96 128 Code length	Code length
Cross Modelity		SCM [58]	37.14	3.11	43.62	204.52	8.5×10^{-6}	0.9		0.7
Cross-Modality		CVH [17]	14.41	1.54	24.98	25.21	2.2×10^{-6}	0.8	* *	0.6
Binary Coding Methods		CMSSH [2]	35.87	1.85	37.85	895.75	6.4×10^{-6}	0.7	**	ZS 0.5
	Unsupervised	CMFH [6]	5.02	2.42	3.93	411.37	7.3×10^{-6}	0.0 *	*	Oración de la companya de la company
Proposed	Supervised	PRBC-Sup	59.71 ±0.754	32.31 ±0.521	63.24 ±0.630	129.01	3.4×10^{-6}	MAP 0.4	× ×	Ö 03
	Unsupervised	PRBC-Unsup	32.27±0.717	16.94 ± 0.448	39.80 ± 0.692	144.34	3.2×10^{-6}	0.3		S 02 V
4096-d C3D Feature (CF)		2.91	-	2.01	-	-	0.2		L 0.1	
4096-d C3D Feature+Reconstruction (CF+R)		12.4	-	10.76	129.01		0.1	**************************************	-0.1	
								32	32 48 64 80 96 128 Code length	32 48 64 80 96 Code length

Partial action recognition:

	16-frame partial actions for testing					32-frame partial actions for testing							
Method		HMDB51			UCF101			HMDB51			UCF101		
		32 bits	64 bits	128 bits	32 bits	64 bits	128 bits	32 bits	64 bits	128 bits	32 bits	64 bits	128 bits
	SDH [46]	13.91	16.47	19.36	27.63	38.05	44.78	12.31	15.15	19.35	33.06	42.78	50.33
	FastHash [21]	16.70	21.08	23.09	37.17	48.57	55.98	15.15	18.14	20.11	39.51	49.31	56.29
Single-Modality	CCA-ITQ [8]	17.45	19.03	21.23	49.23	52.59	54.90	19.42	20.80	22.63	52.53	56.77	59.57
Binary Coding Methods	KSH [34]	2.23	2.85	2.62	2.87	2.28	2.47	2.58	2.73	2.31	7.98	8.02	8.85
	AGH [33]	5.36	6.20	5.5	1.97	1.94	1.47	3.33	3.33	4.62	3.74	4.40	3.82
	PCA-ITQ [8]	2.30	3.08	3.22	4.74	4.94	4.74	4.02	3.63	3.87	6.32	7.39	7.11
	SePH [22]	32.89	33.97	37.15	57.61	63.61	67.84	37.07	39.58	41.24	59.21	65.06	69.11
Cross-Modality	SCM [58]	31.78	36.48	38.67	40.94	62.06	68.57	31.57	35.75	37.95	41.03	62.29	68.97
Binary Coding Methods	CVH [17]	25.52	31.13	34.93	45.07	56.78	64.70	26.32	31.55	36.04	45.90	57.92	66.17
	CMFH [6]	2.65	2.60	3.15	7.04	7.32	7.95	3.94	3.85	4.91	8.84	8.42	9.53
Proposed	PRBC-Sup	42.78	45.80	48.60	70.27	75.11	78.46	46.52	49.32	50.79	71.79	77.47	80.80
Proposed	PRBC-Unsup	29.64	32.76	34.25	58.06	62.94	67.15	31.64	33.90	34.84	56.15	60.49	64.19
	CCA* [9]	39.51 (2048-d)			70.61 (4096-d)			41.87 (2048-d)			72.26 (4096-d)		
Cross-View Feature Learning Methods	PLSR* [54]	37.71 (4096-d)			66.83 (4096-d)			40.02 (4096-d)			68.05 (4096-d)		
	XQDA* [20]	11.53 (512-d)			40.11 (512-d)			14.32 (512-d)			44.14 (512-d)		
	CVFL [55]	40.32 (4096-d)			70.97 (4096-d)			44.12 (4096-d)			73.13 (4096-d)		

Action prediction:

•							-	
Method	UT-Inte	eraction da	taset #1	UT-Interaction dataset #2				
MEMOU	OR=0.1	OR=0.2	OR=0.3	OR=0.1	OR=0.2	OR=0.3		
Bayesian [41]	16.7	16.7	16.7	16.7	16.7	17.1		
BP-SVM [41]	16.8	21.7	27.8	16.7	24.0	35.5		
IBoW [41]	14.5	17.9	30.8	16.8	29.9	34.9	-	
DBoW [41]	15.2	20.2	30.7	16.7	28.9	43.3		
SC [3]	18.3	33.3	56.7	21.7	43.3	50.0	└ ╮┏	
MSSC [3]	18.3	40.0	60.0	21.7	40.0	48.3	;) F	
MTSSVM [15]	36.7	46.7	66.7	33.3	50.0	60.0		
RPT [57]	13.3	26.7	56.7	15.0	33.3	63.3		
AAC [56]	45.0	46.7	60.0	51.3	53.3	60.0	_	
MOVEMES [18]	38.3	54.5	68.3	31.3	41.3	56.7		
MMAPM [14]	46.7	51.7	70.0	36.7	55.0	63.3		
PRBC-Sup@64bits	55.0	58.3	63.3	60.0	65.0	75.0		
PRBC-Sup@128bits	56.7	58.3	65.0	60.0	63.3	71.7		
							1	

