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Closed-set Face Recognition
Open-set face recognition

Open-set Face Recognition

» Face identities do not appear simultaneously in training set and
testing set.

» Open-set face recognition requires more generalization power than
close-set face recognition.

» Essentially, it can be viewed as a metric learning problem.

Prevailing methods for deep face recognition

» Deep-ID network (CUHK)

Combine the softmax loss and the contrastive loss to learn
discriminative face representation.

» FaceNet (Google)

Use Triplet loss to supervise the network learning, but require very
large amount of data. (200 million face images)

» Things in common

They all explicitly treat the open-set face recognition problem as
metric learning problem, since contrastive loss and triplet loss are
both originally used in metric learning.
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» Drawbacks

Deep-ID network combines the softmax loss and contrastive loss,
but they produces different feature distribution. So it may not be a
natural choice. For FaceNet, it requires large amount of data. It is
computationally expensive

Softmax loss learns angularly distributed features

» Softmax loss can naturally learn angularly distributed features, so it
will not be naturally motivated to incorporate any Euclidean losses.
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A motivating binary classification example

Softmax computes the probability for two classes as

pr— exp(W{x + b1) (1)
exp(W{ @ + b1) + exp(Wi x + ba)
exp(Wiax+b
2 piWy = + b) @)

- exp(W{x + b1) + exp(Wix + b2)
The decision boundary produced by softmax loss is
(Wl—WQ)w+b1—b2=0

To achieve angular decision boundary, the weights for the final FC
layer is in fact useless. So we will first normalize the weights and zero
out the biases. To further introduce angular margin, we propose to
make the classification more difficult.

Loss Function Decision Boundary

(W1 —Wo)xe+b1 —ba=0
||| (cos @1 — cos B2) =0
||| (cos m@1 — cos f2) =0 for class 1
||| (cos 81 — cos m2) =0 for class 2

Softmax Loss
Modified Softmax Loss

A-Softmax Loss

SphereFace Algorithm

SphereFace uses the angular softmax (A-Softmax) loss defined as
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where (6,,:)=(—1)*cos(mby, ;)—2k and Oy, € [=, (ki}f)ﬂ].

The parameter m is to control the margin size. Note that the weights
are normalized to 1 in each iteration. Larger m gives larger margin.

The learning and inference pipeline of SphereFace:
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It is the same as traditional CNN framework, so it is extremely simple
and compatible with any advanced network architecture such as VGG,
GoogleNet, ResNet, etc. But with the proposed angular softmax loss,
the learned features will be much more discriminative.

SphereFace feature visualization

» The SphereFace features are very discriminative in the angular space.
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Exploratory study

» How m affects the performance

The verification accuracy on LFW dataset

Dataset

Original m=1 m=2 m=3 m=4

LFW
YTF

97.88 97.90 | 98.40 | 99.25 | 99.42
93.1 93.2 93.8 94.4 95.0

» How the number of conv layers affects the performance

The verification accuracy on LFW dataset
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Experiments on LFW and YTF dataset

available WebFace

dataset, we achieve the
current best performance

and significantly
outperforms the #2
performance.

» Among all the methods
trained on the publicly

Method Models Data LFW | YTF
DeepFace [30] 3 4M* 9735 | 914
FaceNet [27] 1 200M* 99.65 | 95.1

Deep FR [20] 1 2.6M 9895 | 973
DeepID2+ [27] 1 300K* 98.70 | N/A
DeepID2+ [27] 25 300K* 9947 | 93.2
Baidu [15] 1 1.3M* 99.13 | N/A

Center Face [34] 1 0.7M* 99.28 | 949
Yietal [37] 1 WebFace | 97.73 | 92.2

Ding et al. [?] 1 WebFace | 98.43 | N/A

Liu et al. [16] 1 WebFace | 98.71 | N/A
Softmax Loss 1 WebFace | 97.88 | 93.1
Softmax+Contrastive [26] 1 WebFace | 98.78 | 93.5
Triplet Loss [22] 1 WebFace | 98.70 | 934
L-Softmax Loss [16] 1 WebFace | 99.10 | 94.0
Softmax+Center Loss [34] 1 WebFace | 99.05 | 944
SphereFace 1 WebFace | 9942 | 95.0

Experiments on Megaface Challenge

state-of-the-art

performance using only
publicly available small-
scale dataset, while the

other commercial

algorithms use private
and large-scale datasets.

» SphereFace achieves the

Method protocol | Rankl Acc. Ver.
NTechLLAB - facenx large Large 73.300 85.081
Vocord - DeepVol Large 75.127 67.318
Deepsense - Large Large 74.799 87.764
Shanghai Tech Large 74.049 86.369
Google - FaceNet v8 Large 70.496 86.473
Beijing FaceAll_Norm_1600 Large 64.804 67.118
Beijing FaceAll_1600 Large 63.977 63.960
Deepsense - Small Small 70.983 82.851
SIAT_MMILAB Small 65.233 76.720
Barebones FR - cnn Small 59.363 59.036
NTechLAB - facenx_small Small 58.218 66.366
3DiVi Company - tdvm6 Small 33.705 36.927
Softmax Loss Small 54.855 65.925
Softmax+Contrastive Loss [26] Small 65.219 78.865
Triplet Loss [27] Small 64.797 78.322
L-Softmax Loss [16] Small 67.128 80.423
Softmax+Center Loss [34] Small 65.494 80.146
SphereFace (single model) Small 72.729 85.561
SphereFace (3-patch ensemble) Small 75.766 89.142




