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1. Introduction

Semi-global matching (SGM)[1] is the most popular
regularization method for stereo because of its high
accuracy in real-time. However SGM penalties are
difficult to be tuned. This work deals with deep neural
networks for predicting the penalties.

(d) SGM with hand tuned penalties

(c) Winner-tales-all

(b) GT disparity map

(e) SGM with our SGM-Net

- Appropriate SGM penalties are important for accurate disparity maps

Our contributions:
(1) A first learning based penalties estimation for SGM (Sec.3)

(2) New SGM parameterization that separates Pos/Neg disparity changes (Sec.4)
(3) State-of-the-art accuracy (Sec.6)
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SGM: P1/P2 control a smoothness / discontinuity of a disparity map.
Energy function E for SGM:
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T[] : Kronecker delta

(1)

2. Related work

|.  Hand tuned penalties. Ex. Smaller penalties on edges = obj. boundary

Il. Learning based penalties for MRF.
- For semantic segmentation and difficult to apply to SGM.
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(b) Minimum cost path L, (x,d)

3. SGM-Nets
How to minimize Eq.(1) by SGM ?

—->Winner-takes-all (WTA)
over accumulated costs Lr

D(x,)=argmin» L.(x,,d)  (2)
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(c) Flat/Slant/Border

SGM-Net : Predict P1/P2 at each pixel with a image

From Eq.(2), we formulate Hinge loss

— Derivatives of Eq.(3) wrt. P
are needed to train the networks

— A. Path cost Eg

Minimize loss over the accumulated path.
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Accumulated cost at pixel X, of disparity d
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—> B. Neighbor cost E_,

Set correct path by
checking adjacent pixels
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Z max(O, L(xO dy )— L(x0 ,d )+ m\) (3).
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—->SGM-Net is also applicable to the parameterization

5. SGM-Net architecture

« Standard and Signed SGM-Nets output
8 and 16 values, respectively.
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o 3x3 16 filters and 128 dim FCs
 Computation takes 0.02 seconds on GPU
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