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1. Introduction

Our contributions:
(1) A first learning based penalties estimation for SGM (Sec.3)

(2) New SGM parameterization that separates Pos/Neg disparity changes (Sec.4)

(3) State-of-the-art accuracy (Sec.6)

2. Related work
I. Hand tuned penalties. Ex. Smaller penalties on edges = obj. boundary
II. Learning based penalties for MRF. 

How to minimize Eq.(1) by SGM ?

C. All costs

(a) Input image

[1] H.Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information”, PAMI 2008.
[2] J.Zbontar et al., “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR2016.
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Semi-global matching (SGM)[1] is the most popular 
regularization method for stereo because of its high 
accuracy in real-time. However SGM penalties are 
difficult to be tuned. This work deals with deep neural 
networks for predicting the penalties. 

SGM: P1/P2 control a smoothness / discontinuity of a disparity map.
Energy function E for SGM:
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Derivatives of Eq.(3) wrt. P
are needed to train the networks

Derivatives wrt. P
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4. Signed parameterization

5. SGM-Net architecture

6. Results

Ex.)
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Margin

A. Path cost B. Neighbor cost
Sparse GT Acceptable Unacceptable
Influenced pixels Beyond neighbor pixels Only neighborpixels
Disparity ambiguity Yes No
Initial parameters Influenced Uninfluenced
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P1/P2 have different penalties
depending on either positive or
negative disparity change.
Eq.(1) becomes to
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Synthetic dataset 

Real dataset 

(a) GT disparity map

(b) Initial state of SGM-Net (c) SGM-Net (Path cost)

(d) SGM-Net(Neighbor cost)
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(e) SGM-Net with all costs
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• ZNCC / MC-CNN as a matcher
• Various settings of SGM.

• MC-CNN as a matcher (67 [sec.] for the matching)
• Got 1st rank at the CVPR deadline#

• Standard and Signed SGM-Nets output 
8 and 16 values, respectively.

• 3x3 16 filters and 128 dim FCs
• Computation takes 0.02 seconds on GPU

#18/10/2016 except anonymous submission

(b) GT disparity map

(c) Winner-tales-all (d) SGM with hand tuned penalties (e) SGM with our SGM-Net

Appropriate SGM penalties are important for accurate disparity maps

Original image Hand tuned SGM

Standard SGM-Net Signed SGM-Net

Percentage of erroneous pixels on non-occluded 
areas with an error threshold of 3 pixels 

KITTI: http://www.cvlibs.net/datasets/kitti/

SceneFlow: https://lmb.informatik.uni-freiburg.de/

KITTI 2012

For semantic segmentation and difficult to apply to SGM.

positive positivenegative negative

(c) Flat/Slant/Border

Penalty map
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Set correct path by 
checking adjacent pixels

Minimize loss over the accumulated path.

From Eq.(2), we formulate

3. SGM-Nets
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Predict 16 values 
for each pixel.

SGM-Net : Predict P1/P2 at each pixel with a image

Signed SGM-Net

Path-ambiguity
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