Imperial College London

Overview

- We propose Transition Forests: a temporal decision forest model for human actio and detection.
- Growing trees tends to group frames that have similar temporal transitions and sh
- Trees are grown for different temporal orders and combined in prediction.
- Efficient and online per-frame inference.

• Transitions as frames traveling from node i to node j in d time-steps on a given

 $T_i^{\mathcal{I}} = \{\{(x_{t-d}, y_{t-d}), (x_t, y_t)\} \mid (x_{t-d}, y_{t-d}) \in S_i \land (x_t, y_t) \in S_j\}.$

Learning transition forests

• Objective function for one layer of the tree:

$$\min_{\{\theta_i\}} E_c(\{\theta_i\}_{i \in N_c}) + E_t(\{\theta_i\}_{i \in N_c \cup N_t}),$$

where E_c is the classification loss on single frames, N_c and N_t are the layer nodes range assigned to be optimized using either classification or transition objective functions.

• Transition objective function:

$$E_t(\theta_j) = \sum_{m,n \in \{1,2\}} |T_{2j+m}^{2j+n}| H(T_{2j+m}^{2j+n}), \text{ with } H(T_{(.)}^{(.)}) \text{ the Shannon}$$

Transition Forests: Learning Discriminative Temporal Transitions for Action Recognition and Detection Guillermo Garcia-Hernando and Tae-Kyun Kim Imperial College London

Capturing distant node transitions (within a layer):
We process an iterative approach to minimize the objective function (algorithm box in the paper).
F(
$$\theta$$
) (θ_i) ($_{i,j \in N_i \rightarrow N_i}$) = $\sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}\\ w_i = \{1,2\}}}^{bareous re-duil modes (w + i)} (x_{i,j})$
 $+ \sum_{\substack{w_i = \{1,2\}}}^{bareous re-dui$

forest and $|\mathcal{M}|$ the ensemble size.

i entropy.

 $(y_t|y_{t-d})^{(m)}$

t given that x_t and x_{t-d} reached leaf pothesis y_{t-d} .

 $\sum p_d(y_t | x_t, x_{t-d}, y_{t-d}),$

where $\pi_{\ell(x_t)}(y_t)$ is the classification probability (static frame), k is the temporal order of the transition

Experimental results

• Comparison with decision forest baselines (action recognition):

90.90 91.77	92.09	
90.90	-	
00.00		
89.46	91.31	
87.81	90.48	
86.83	87.77	
MSRC-12	MSR-Action3D	F
	86.83 87.81 89.46	87.81 90.48

• Comparison with state-of-the-art approaches (action recognition):

	Method	Year	Real-time
-	BoF forest	CVPR'13	X
\square	Lie group	CVPR'14	X
-	HBRNN-L	ICCV'15	\checkmark
tiO	Graph-based	ECCV'16	X
Ú V	Gram matrix	CVPR'16	\checkmark
MSR-Action	Key-poses	CVPR'16	\checkmark
٨S	PCRF (our result)	ICCV'15	\checkmark
2	HURNN-L	ICCV'15	\checkmark
	Ours	CVPR'17	\checkmark

	Method	Year	Real-time
\square	Bag of poses	CVPR'13	×
с С	Lie group	CVPR'14	×
nce	PCRF (our result) Rolling rot.	ICCV'15 CVPR'16	√ X
Floren	Graph-based	ECCV16	X
	Key-poses	CVPR'16	\checkmark
	Ours	CVPR'17	\checkmark

• Comparison with baselines and state-of-the-art (online action detection):

	Baselines		State-of-the-art			
	RF	SW	PCRF	RNN	JCR-RNN (ECCV'16)	Ours
F1-score (Action)	0.578	0.556	0.607	0.600	0.653	0.712
F1-score (Start frame) F1-score (End frame)	0.361 0.391	0.366 0.326	0.378 0.412	0.366 0.376	0.418 0.443	0.514 0.527
Inference time (s)	0.59	0.61	3.58	3.14	2.60	1.84

Florence-3D 85.46 88.44 89.06 91.23 Temporal order (k)

Imperial Computer Vision and Learning Lab

Visit us!

