Oriented Response Networks

Yanzhao Zhou¹
Qixiang Ye¹
Qiang Qiu²
Jianbin Jiao¹

¹ University of Chinese Academy of Sciences
² Duke University

Motivation

The ability of Deep Convolutional Neural Networks (DCNNs) in handling significant image rotations remains limited.

The ability of Deep Convolutional Neural Networks (DCNNs) in handling significant image rotations remains **limited**.

Our Goal

- Enable DCNNs to better understand rotation
- Reduce network parameters
- Prevent over-fitting
- Boost generalization ability
- Improve performance

Introduce ORN

We propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. DCNNs using ARFs are referred to as Oriented Response Networks (ORNs).

Experiment Results

ORN improves **performance while using significantly fewer parameters**.

<table>
<thead>
<tr>
<th>Method</th>
<th>CNN Time(s)</th>
<th>CNN Params(%)</th>
<th>CNN MNIST(%)</th>
<th>CNN MNIST-rot(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>16.4</td>
<td>100.0</td>
<td>0.73</td>
<td>2.82</td>
</tr>
<tr>
<td>ORN</td>
<td>17.8</td>
<td>31.4</td>
<td>0.59</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Application

ORN improves **performance while using significantly fewer parameters**.

Conclusion

ORN has great potential for application.

- Upgrading to ORN is a simple yet effective strategy to boost the ability of DCNNs in handling image rotations.
- Modern architectures can be easily upgraded.

Contact

Scan to get Paper & Code

Yanzhao Zhou
zhouyanzhao215@mails.ucas.ac.cn
http://yzhou.work