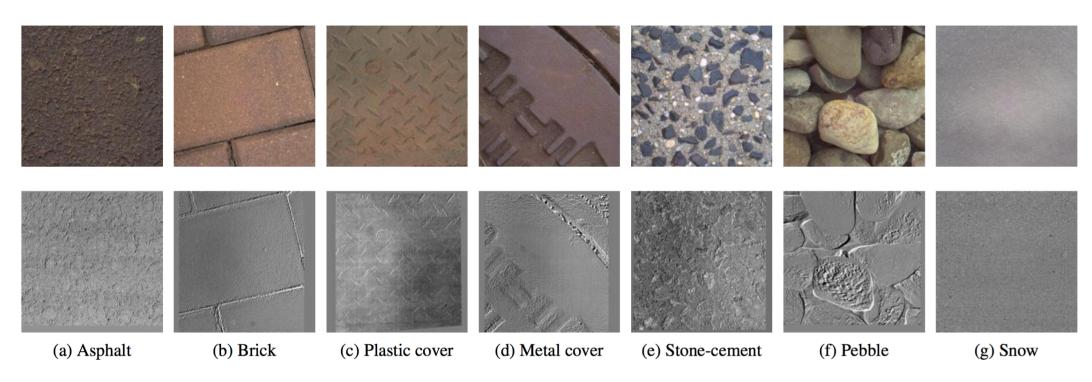


Overview:

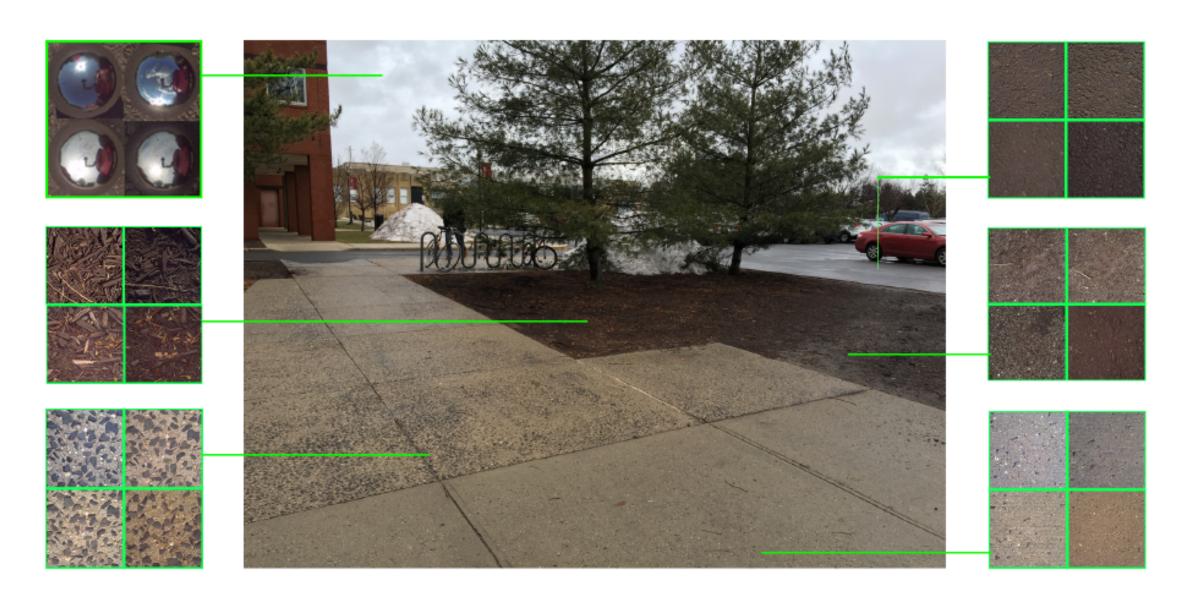

- Ground Terrain in Outdoor Scenes (GTOS) database: over 30,000 images, 40 classes, varying weather and lighting conditions.
- Differential angular imaging: middle-ground between reflectance-based and image-based material recognition.
- Differential Angular Imaging Network (DAIN): surpasses single view or coarsely quantized multiview images.

Measure equipment:

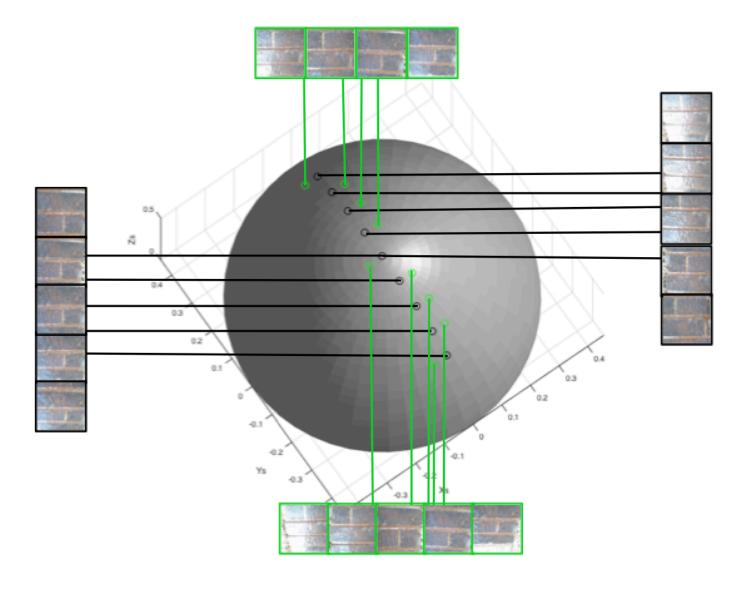
- Mobile Robots P3-AT robot
- Basler aca2040-90uc camera
- Macmaster-Carr 440C stainless steel Sphere
- Cyton gamma 300 robot arm
- Edmund Optics 25mm /F1.8 lens
- DGK 18% white balance and color reference card

Differential Angular Imaging:

- Reveal the gradients at particular view point
- Observe relief texture
- > Sparsity provides computational advantage


Differential Angular Imaging for Material Recognition Jia Xue¹, Hang Zhang¹, Kristin Dana¹, Ko Nishino²

¹Rutgers University, Piscataway, NJ, ²Drexel University, Philadelphia, PA.


GTOS Dataset:

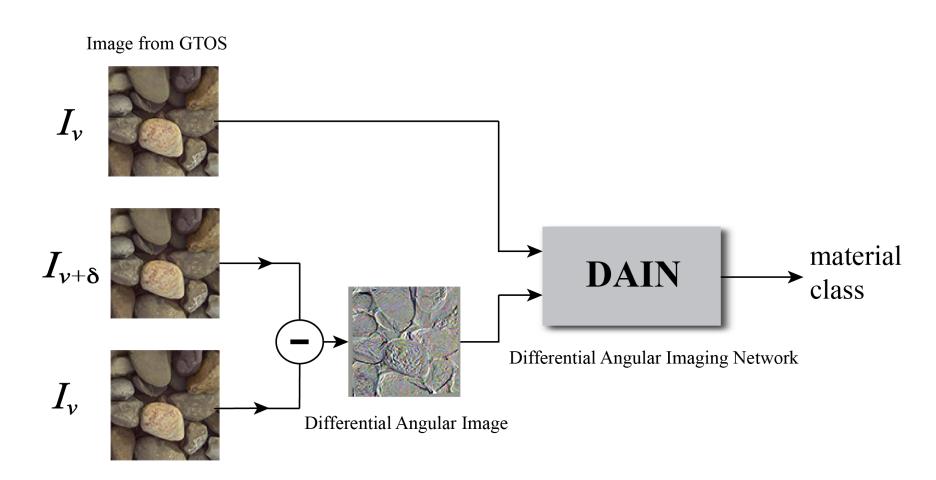
40 surface classes, 4 to 14 instances, 19 viewing directions, 4 different weathers, 3 different exposure times

Datasets	samples	classes	views	illumination	in scene	scene image	camera	year
							parameters	
CUReT [8]	61	61		205	Ν	Ν	N	1999
KTH-TIPS [15]	11	11	27	3	Ν	Ν	N	2004
UBO2014 [42]	84	7	151	151	Ν	Ν	N	2014
Reflectance disk [43]	190	19	3	3	N	Ν	Y	2015
4D Light-field [40]	1200	12	1	1	Y	Ν	N	2016
NISAR [3]	100	100	9	12	N	Ν	N	2016
GTOS(ours)	606	40	19	4	Y	Y	Y	2016

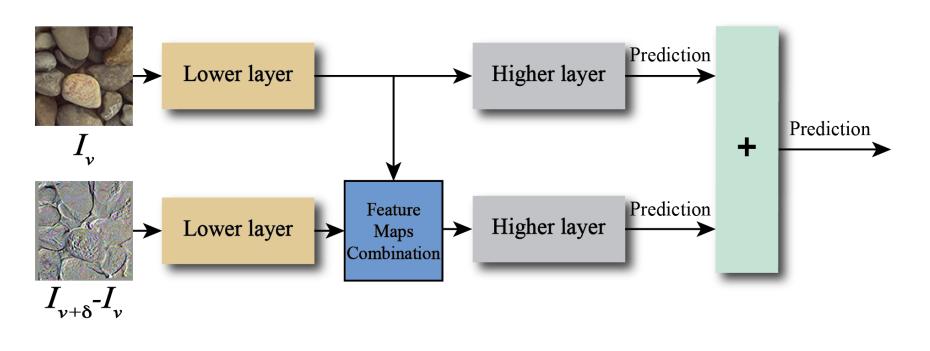
Application:

Robot Navigation & Automatic Driving

- Determining control based on current ground terrain
- Determining road conditions by partial real time reflectance measurements


> Photometric Stereo

Estimating the surface normal of materials


Shape Reconstruction

• Capturing the shape and appearance of materials

DAIN for Material Recognition:

Method Overview

DAIN (differential angular image network)

Method	First	Second	Accuracy	
	input	input		
single view CNN	I_v	-	$74.3_{\pm 2.8}$	
multiview CNN, voting	I_v	-	78.1±2.4	
multiview CNN,3D filter	I_v	-	$74.8_{\pm 3.2}$	
single view DAIN (Sum)	I_v	$I_{v+\delta}$	$77.5_{\pm 2.7}$	
single view DAIN (Sum)	I_v	I_{δ}	79.4±3.4	
single view DAIN (Max)	I_v	I_{δ}	79.0±1.8	
multiview DAIN (Sum/voting)	I_v	I_{δ}	80.0±2.1	
multiview DAIN (Sum/pooling)	I_v	I_{δ}	$81.2_{\pm 1.7}$	
multiview DAIN (3D filter/pooling)	I_v	I_{δ}	81.1±1.5	

Architecture	Accuracy
FV+CNN [4]	75.4%
$FV-N+CNN+N_{3D}[10]$	58.3%
MVCNN [36]	78.1%
multiview DAIN (3D filter), pooling	81.4%

Compare with state of art algorithms on GTOS dataset

Acknowledgement:

collection.

Experiment:

Compare standard CNN with DAIN

 Single view DAIN achieves better recognition than multiview CNN

 Multiview DAIN (Sum/pooling) and multiview DAIN (3D filter/pooling) perform best

This work was supported by National Science Foundation award IIS-1421134. A GPU used for this research was donated by the NVIDIA Corporation. Thanks to Di Zhu, Hansi Liu, Lingyi Xu, and Yueyang Chen for help with data