
Convolutional Random Walk Networks for Semantic Image Segmentation
!

V. Conclusions

❑ Goals:
• To address the issues of poor boundary localization and
spatially fragmented segmentation predictions.

III. Convolutional Random Walk Networks

Gedas Bertasius, Jianbo Shi Lorenzo Torresani Stella X. Yu
University of Pennsylvania Dartmouth College UC Berkeley / ICSI

•A Convolutional Random Walk Network (RWN) is a network
composed of 1) semantic segmentation and 2) pixel-level
affinity prediction branches.

•The predictions from two branches are merged via a novel
random walk layer.

•RWN requires only 131 additional parameters compared to
standard FCNs.

•The whole network can be optimized jointly end-to-end.

I. Introduction

IV. Results

•Implemented as a DeepLab FCN

•RWN improves upon traditional FCNs by addressing poor
localization and spatially disjoint segmentation issues.

•RWN can be easily incorporated into a standard FCN
framework, and trained jointly end-to-end.

•Unlike prior methods, RWN achieves these goals without
increasing the complexity of the model.

II. Background
❑ Random Graph Walks
•Let be an affinity matrix where
denotes how similar the nodes i and j are.

•In the context of semantic segmentation, each pixel can be
viewed as a node and edges can be viewed as a similarity
between two given pixels (e.g. color similarity)

•Then let denote a diagonal degree matrix such
that for all j except j=i.

•Then by definition, the random walk transition matrix is
defined as .

W 2 Rn⇥n Wij 2 [0, 1]

D 2 Rn⇥n

Dii =
Xn

j=1
Wij

A = D�1W

❑ Differences with MRFs/CRFs
• Random walk methods can implement any arbitrary graph
structure via an affinity matrix specification while CRFs
typically employ graphs with a fixed grid structure.

• Random walk methods can propagate information across the
nodes via a standard matrix multiplication without resorting
to approximate inference techniques.

❑ Key Ideas

❑ Semantic Segmentation Branch

❑ Pixel-Level Affinity Branch
•Uses RGB, conv1_1, conv1_2 features in conjunction to learn the weights
predicting how similar two given pixels are.

•The predicted affinities are assembled into an affinity matrix , which
is used to construct a random walk transition matrix .

•The affinity learning branch uses only 131 parameters.

W
A

❑ Random Walk Layer

❑ Prediction

•Combines the predictions from both branches via a matrix
multiplication .

•During training, the gradients from the loss layer are propagated

back to the affinity learning branch as , and as

to the segmentation branch.

ŷ = Af

FC8 Activations

DeepLab FCN Architecture
RGB Image

Sparse Pairwise L1 Distances
 Sparse Pixel
 Similarity Matrix

1 x 1 x k conv

 Ground Truth
 Pixel Similarities

 Exp

 Ground Truth

 Segmentation

 Segmentation

Random Walk Layer

ŷ = Af

Affinity Learning Branch

Pairwise L1
 Distances

n⇥ n⇥m

Row-Normalization:

n⇥ n⇥ 3

f 2 Rn2⇥m

A 2 Rn2⇥n2

W 2 Rn2⇥n2

F 2 Rn2⇥n2⇥k

Input Image DeepLab RWN

Spatial Smoothness Results

Input Image Iteration 0 Iteration 10 Iteration 50

❑ Run Time
•denseCRF inference requires ~3.301 seconds per image,
and it achieves 81.9% IoU on Pascal SBD dataset.

•A single random walk iteration takes ~0.032 seconds,
and it achieves 82.2% IoU (with R=40).

@L

@ŷ
@L

@A
=

@L

@ŷ
fT @L

@f
= AT @L

@ŷ

0 2 4 6 8 10 12 14 16 18 20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Trimap Width (in Pixels)

P
ix

e
l C

la
ss

ifi
ca

tio
n
 E

rr
o
r

(%
)

Localization Around the Boundaries Error

DeepLab
RWN

0 5 10 15 20 25 30 40 50 60 inf
0.735

0.74

0.745

0.75

0.755

0.76

0.765

Number of Random Walk Steps

IO
U

 A
cc

u
ra

cy

Accuracy versus the Number of Random Walk Steps

Mean−class IOU

• We want to achieve this goal with an end-to-end trainable
model and without increasing the complexity of the model.

(1)

(2)

•Applying a random walk until convergence produces the
following prediction rule:

