Convolutional Random Walk Networks for Semantic Image Segmentation
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* To address the issues of poor boundary localization and
spatially fragmented segmentation predictions.
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* We want to achieve this goal with an end-to-end trainable 1 Semantic Segmentation Branch
model and without increasing the complexity of the model.

e Implemented as a DeeplLab FCN
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denotes how similar the nodes i and j are.

. . . e Combines the predictions from both branches via a matrix
 In the context of semantic segmentation, each pixel can be

viewed as a node and edges can be viewed as a similarity multiplication § = Af.
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e Then by definition, the random walk transition matrix is 1 Predicti
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increasing the complexity of the model.



