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V. Conclusions

❑ Goals: 
• To address the issues of poor boundary localization and 
spatially fragmented segmentation predictions.
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•A Convolutional Random Walk Network (RWN) is a network 
composed of 1) semantic segmentation and 2) pixel-level 
affinity prediction branches. 

•The predictions from two branches are merged via a novel 
random walk layer. 

•RWN requires only 131 additional parameters compared to 
standard FCNs. 

•The whole network can be optimized jointly end-to-end.

I. Introduction

IV. Results

•Implemented as a DeepLab FCN

•RWN improves upon traditional FCNs by addressing poor 
localization and spatially disjoint segmentation issues. 

•RWN can be easily incorporated into a standard FCN 
framework, and trained jointly end-to-end. 

•Unlike prior methods, RWN achieves these goals without 
increasing the complexity of the model.

II. Background
❑ Random Graph Walks
•Let                     be an affinity matrix where                  
denotes how similar the nodes i and j are.  

•In the context of semantic segmentation, each pixel can be 
viewed as a node and edges can be viewed as a similarity 
between two given pixels (e.g. color similarity) 

•Then let                   denote a diagonal degree matrix such 
that                         for all j except j=i. 

•Then by definition, the random walk transition matrix is 
defined as                   . 
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❑ Differences with MRFs/CRFs
• Random walk methods can implement any arbitrary graph 
structure via an affinity matrix specification while CRFs 
typically employ graphs with a fixed grid structure. 

• Random walk methods can propagate information across the 
nodes via a standard matrix multiplication without resorting 
to approximate inference techniques.

❑ Key Ideas

❑ Semantic Segmentation Branch

❑ Pixel-Level Affinity Branch
•Uses RGB, conv1_1, conv1_2 features in conjunction to learn the weights 
predicting how similar two given pixels are. 

•The predicted affinities are assembled into an affinity matrix     , which 
is used to construct a random walk transition matrix    . 

•The affinity learning branch uses only 131 parameters.
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❑ Random Walk Layer

❑ Prediction

•Combines the predictions from both branches via a matrix 
multiplication               . 

•During training, the gradients       from the loss layer are propagated 

back to the affinity learning branch as                  , and as                    

to the segmentation branch.
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❑ Run Time
•denseCRF inference requires ~3.301 seconds per image, 
and it achieves 81.9% IoU on Pascal SBD dataset. 

•A single random walk iteration takes ~0.032 seconds, 
and it achieves 82.2% IoU (with R=40).
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• We want to achieve this goal with an end-to-end trainable 
model and without increasing the complexity of the model.

(1)

(2)

•Applying a random walk until convergence produces the 
following prediction rule:


