
I. marginalize over viewpoint and point-cloud

the measure is given by SLAM 

II. CNN as an implicit likelihood query function

when covariance P is small

update is simplified to

III. further assumptions between objects

Estimate scene   and objects     with geometric 
(shape & pose)     and semantic (class)     attributes
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Videos & Code available at http://vision.ucla.edu/visA chair is detected (a), and later becomes occluded (b, 
shown in dashed lines). Our system predicts its re-
appearance and resumes update (c).

Occlusion Management & Short-term Memory

Overview

State Update Illustration. The location and orientation of 
the cars are refined causally over time.
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Indoor Sequences

Outdoor Driving Sequence (3.7km)

A real car is detected by our system, unlike the toy car, 
despite both scoring high likelihood and therefore being 
detected by an image-based system.

Class-specific Priors --- Characteristic Scales

Blue: GT Green: Our results  Yellow: SubCNN

Position error < 0.5 m < 1 m < 1.5 m
Orientation error method #TP Precision Recall #TP Precision Recall #TP Precision Recall

< 30�
Ours-FNL 150 0.14 0.10 355 0.34 0.24 513 0.49 0.35
Ours-INST 135 0.13 0.09 270 0.26 0.18 368 0.35 0.25
SubCNN 99 0.10 0.07 254 0.26 0.17 376 0.38 0.26

< 45�
Ours-FNL 157 0.15 0.11 367 0.35 0.25 533 0.50 0.36
Ours-INST 141 0.13 0.10 283 0.27 0.19 388 0.37 0.26
SubCNN 99 0.10 0.07 257 0.26 0.17 383 0.38 0.26

� Ours-FNL 169 0.16 0.11 425 0.40 0.29 618 0.58 0.42
Ours-INST 149 0.14 0.10 320 0.30 0.22 450 0.43 0.31
SubCNN 104 0.10 0.07 272 0.27 0.18 409 0.41 0.28
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Comparison and Evaluation

System Highlights

Real Scene ResultsIntroduction

Motivation

t0 t1 t2 t3 t4 t5

We describe a system to detect objects in 
three-dimensional space using visual and inertial 
sensors (accelerometer and gyroscope). 
The resulting system can process the video 
stream causally in real time, and provides a 
representation of objects in the scene that is 
persistent.

Principles
Objects exist in the scene, not in the image; 
They persist, so confidence on their presence 
should grow as more evidence is accrued from 
multiple (test) images; 
Once seen, the system should be aware of their 
presence even when temporarily not visible;
Such awareness should allow it to predict when 
they will return into view, based on scene 
geometry and topology;
Objects have characteristic shape and size in 3D, 
and vestibular (inertial) sensors provide a global 
scale and orientation reference that the system 
should leverage on.

Methods (cont'd)

Methods

System Flow Chart

Video

Inertials

Geometry (shape & pose)
Semantics (class label)

Likelihood by CNN

Given measurements up to time t yt

Quantity of interest: posterior of objects in the scene

Problem Formalization

which is a minimal sufficient representation.

Solution

Context 
 --- can be learned from data 
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Geometry: Intel Core i7 Overall ~300 FPS

Semantics: Nvidia GTX 760 Overall ~17 FPS 

Bottleneck: image-based object detectors

Current implementation runs CNN every 3 frames

Performance
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