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We describe a system to detect objects in
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Objects exist in the scene, not in the image; Denx (U1, Vg = P(Lelli, by) Cl
They persist, so confidence on their presence P(Uel2? 9, 8) = G Ui, N (U8 Q)

should grow as more evidence is accrued from
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Such awareness should allow it to predict when

they will return into view, based on scene system Flow Chart

p(I¢|ly, bj) Likelihood by CNN

Inertials  u,—3] SLAM despite both scoring high likelihood and therefore being

/)  Filter detected by an image-based system.

Geometry (shape & pose) )
Occlusion Management & Short-term Memory

Semantics (class label)

scale and orientation reference that the system
should leverage on.
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and vestibular (inertial) sensors provide a global - w i A real car is detected by our system, unlike the toy car,

Problem Formalization
Given measurements up to time t ¥’

State Update lllustration. The location and orientation of
the cars are refined causally over time.

Performance

Estimate scene ¢and objects =’ with geometric
(shape & pose) s; and semantic (class) [; attributes

Quantity of interest: posterior of objects in the scene
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Geometry: Intel Core i7 Overall ~300 FPS

Context Semantics: Nvidia GTX 760 Overall ~/7 FPS e
' can be learned from data A chair is detected (a), and later becomes occluded (b,

Videos & Code available at http://vision.ucla.edu/vis

Bottleneck: image-based object detectors : : . .
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which is a minimal sufficient representation. . .
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