

Spatially Adaptive Computation Time for Residual Networks

Michael Figurnov¹ Maxwell D. Collins² Yukun Zhu² Li Zhang² Jonathan Huang² Dmitry Vetrov^{1,3} Ruslan Salakhutdinov⁴

¹National Research University Higher School of Economics ²Google Inc. ³Yandex ⁴Carnegie Mellon University

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Motivation

Can we make networks **faster** and **more interpretable** by adapting the amount of computation?

Contribution

A novel mechanism that

- adapts the computation spatially
- provides introspection
- is problem-agnostic
- ✓ is end-to-end trainable
- scales to ImageNet and COCO

Residual Network (ResNet)

Adaptive Computation Time (ACT)

Spatially Adaptive Computation Time (SACT)

Apply ACT "convolutionally" to every spatial position of residual network's block

Residual units are evaluated only in the active positions!

Image classification (ImageNet dataset)

Object detection (COCO dataset)

SACT has better speed-mAP trade-off compared to reducing the depth of ResNet

Ponder cost maps tend to highlight salient objects, even though the SACT model is not trained on cat2000!

Code: github.com/mfigurnov/sact