
Ø Details
• Checkout the paper: Learning to Reason: End-to-End Module Networks for 

Visual Question Answering in arXiv preprint arXiv:1704.05526, 2017

• Project page and code of N2NMN: http://ronghanghu.com/n2nmn/
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Relationships in referential expressions
Task: given a referential expression in natural language, 

ground (localize) the corresponding visual entities

Ø Expressions involve inter-object relationships
Ø Exploit the compositionality of natural language

Analysis of CMNs on multiple datasets and tasks
Ø Compositionality: grounding by localizing the entities and analyzing their relationships
Ø Modularity: different sub-tasks are handled by different modules

Extension – End-to-End Module Networks (N2NMN)
Ø Learning the network structure and module layout end-to-end
Ø Free-form layouts beyond (subject, relationship, object) triplet

Localizing referential expressions in Google-Ref [2] “Which” questions in Visual-7W [3]

Localizing relationship expressions in Visual Genome [1]

on Visual	Genome	[1] training supervision P@1-subj P@1-pair
our	baseline	(loc module) subject-GT 41.20%	 -	
our	baseline	(loc module) subject-object-GT -	 23.37%	
our	full	model subject-GT 43.81% 26.56%
our	full	model subject-object-GT 44.24% 28.52%

on Google-Ref	[2] P@1-subj
Mao	et	al.	2016	[2] 60.7%	
Yu	et	al.	2016	[4] 64.0%	
Nagaraja et al.	2016	[5] 68.4%	
our	baseline	(loc module) 66.5%	
our	full	model 69.3%	

on Visual-7W	“Which”	
questions	[3]

P@1-subj

Nagaraja et al.	2016	[5] 56.10%	
our	baseline	(loc module) 71.61%	
our	full	model 72.53%	

Quantitative evaluation
Ø Evaluation: top-1 precision of localizing the described entities (subject or subj-obj pair)
Ø End-to-end training with subj-obj bounding box pair or subject bounding box only

Visualization

1. Extract a set of candidate regions (object proposals)
2. Soft-parse the expression into (subject, relationship,

object) using soft-attention windows over the text
3. Unary subject and object scores with localization module
4. Pairwise relationship scores with relationship module
5. Sum the three scores into final pairwise scores
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Localize the image regions 
corresponding to: 
“the woman in a cream-colored 
wedding dress cutting cake”

Our model: Compositional Modular Networks (CMNs)
Input: an image and a referential expression
Output: bounding box pair of the subject and the object

on VQA [7] Accuracy
CNN+BoW [8] 55.7	
CNN+LSTM [7] 53.7	
CNN+LSTM+MCB [9] 64.7	
CNN+LSTM+SA [10] 57.6	
NMN [11] 58.6	
ours (N2NMN) 64.2	

on CLEVR [6] Accuracy
CNN+BoW [8] 48.4	
CNN+LSTM [7] 52.3	
CNN+LSTM+MCB [9] 51.4	
CNN+LSTM+SA [10] 68.5	
NMN [11] 72.1	
ours (N2NMN) 83.7	


