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Relationships in referential expressions Analysis of CMNs on multiple datasets and tasks Extension — End-to-End Module Networks (N2NMN)

Task: given a referential expression in natural language, » Compositionality: grounding by localizing the entities and analyzing their relationships » Learning the network structure and module layout end-to-end

ground (localize) the corresponding visual entities > Modularity: different sub-tasks are handled by different modules > Free-form layouts beyond (subject, relationship, object) triplet
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