

### Modeling Relationships in Referential Expressions with Compositional Modular Networks Ronghang Hu<sup>1</sup> Marcus Rohrbach<sup>1,2</sup> Trevor Darrell<sup>1</sup> Jacob Andreas<sup>1</sup> Kate Saenko<sup>3</sup> <sup>2</sup>Facebook AI Research <sup>3</sup>Boston University <sup>1</sup>University of California, Berkeley

# **Relationships in referential expressions**

Task: given a referential expression in natural language, ground (localize) the corresponding visual entities



Localize the image regions corresponding to: *"the woman in a cream-colored"* wedding dress cutting cake"

- Expressions involve inter-object relationships
- Exploit the compositionality of natural language

**Our model: Compositional Modular Networks (CMNs) Input**: an image and a referential expression **Output:** bounding box pair of the subject and the object



- 1. Extract a set of candidate regions (object proposals)
- 2. Soft-parse the expression into (*subject*, *relationship*, object) using soft-attention windows over the text
- 3. Unary subject and object scores with *localization module*
- 4. Pairwise relationship scores with *relationship module*
- 5. Sum the three scores into final pairwise scores

Project page and code: http://ronghanghu.com/cmn/

# Analysis of CMNs on multiple datasets and tasks

- > Compositionality: grounding by localizing the entities and analyzing their relationships
- Modularity: different sub-tasks are handled by different modules

### Visualization

Localizing relationship expressions in Visual Genome [1]



### Localizing referential expressions in Google-Ref [2]



## **Quantitative evaluation**

 $\succ$  Evaluation: top-1 precision of localizing the described entities (subject or subj-obj pair) End-to-end training with subj-obj bounding box pair or subject bounding box only

| training supervision | P@1-subj                                                                          | P@1-pair                                                                                              |
|----------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| subject-GT           | 41.20%                                                                            | -                                                                                                     |
| subject-object-GT    | -                                                                                 | 23.37%                                                                                                |
| subject-GT           | 43.81%                                                                            | 26.56%                                                                                                |
| subject-object-GT    | 44.24%                                                                            | 28.52%                                                                                                |
|                      | training supervisionsubject-GTsubject-object-GTsubject-object-GTsubject-object-GT | training supervisionP@1-subjsubject-GT41.20%subject-object-GT-subject-GT43.81%subject-object-GT44.24% |

| on Google-Ref [2]         | P@1-subj | on Visual-7W "Which"      | Ρ( |
|---------------------------|----------|---------------------------|----|
| Mao et al. 2016 [2]       | 60.7%    | questions [3]             |    |
| Yu et al. 2016 [4]        | 64.0%    | Nagaraja et al. 2016 [5]  | 5  |
| Nagaraja et al. 2016 [5]  | 68.4%    | our baseline (loc module) | 7  |
| our baseline (loc module) | 66.5%    | our full model            | 72 |
| our full model            | 69.3%    |                           |    |
|                           |          |                           |    |



### "Which" questions in Visual-7W [3]

# **Extension – End-to-End Module Networks (N2NMN)**

There is a shiny object that is right of the gray metallic cylinder; does it have the same size as the large rubber sphere?

Layout policy



> Details



## • Project page and code of N2NMN: <u>http://ronghanghu.com/n2nmn/</u>

### References

[1] Krishna, Ranjay, et al. "Visual genome: Connecting language and vision using crowdsourced dense image annotations." *IJCV* 123.1 (2017): 32-73. [2] Mao, Junhua, et al. "Generation and comprehension of unambiguous object descriptions." CVPR. 2016. [3] Zhu, Yuke, et al. "Visual7w: Grounded question answering in images." CVPR. 2016. [4] Yu, Licheng, et al. "Modeling context in referring expressions." ECCV, 2016. [5] Nagaraja, Varun K., Vlad I. Morariu, and Larry S. Davis. "Modeling context between objects for referring expression understanding." ECCV, 2016. [6] Johnson, Justin, et al. "CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning." CVPR. 2017. [7] Antol, Stanislaw, et al. "Vqa: Visual question answering." ICCV. 2015 [8] Zhou, Bolei, et al. "Simple baseline for visual question answering." ECCV, 2016. [9] Fukui, Akira, et al. "Multimodal compact bilinear pooling for visual question answering and visual grounding." EMNLP, 2016. [10] Yang, Zichao, et al. "Stacked attention networks for image question answering." CVPR, 2016. [11] Andreas, Jacob, et al. "Neural module networks." CVPR, 2016.



## Learning the network structure and module layout end-to-end Free-form layouts beyond (subject, relationship, object) triplet

### • Checkout the paper: Learning to Reason: End-to-End Module Networks for Visual Question Answering in arXiv preprint arXiv:1704.05526, 2017

| on CLEVR [6]     | Accuracy |
|------------------|----------|
| CNN+BoW [8]      | 48.4     |
| CNN+LSTM [7]     | 52.3     |
| CNN+LSTM+MCB [9] | 51.4     |
| CNN+LSTM+SA [10] | 68.5     |
| NMN [11]         | 72.1     |
| ours (N2NMN)     | 83.7     |

| on VQA [7]       | Accuracy |
|------------------|----------|
| CNN+BoW [8]      | 55.7     |
| CNN+LSTM [7]     | 53.7     |
| CNN+LSTM+MCB [9] | 64.7     |
| CNN+LSTM+SA [10] | 57.6     |
| NMN [11]         | 58.6     |
| ours (N2NMN)     | 64.2     |