

THE UNIVERSITY OF WESTERN AUSTRALIA Achieve International Excellence

Australian National University

Introduction:

- > Discriminative dictionaries are effective for classification. However, classification performance depends on:
- Dictionary size (pre-defined),
- Relationship between the dictionary atoms and the class labels (pre-defined), and
- Suitable classifier for the sparse codes (often learned separately).
- > A Bayesian approach is proposed to learn a discriminative dictionary jointly with a classifier.
- The learning process
- Automatically determines the required dictionary size,
- Adaptively learns the relationships between the dictionary atoms and the class labels, and
- Strongly couples the classifier with the dictionary.

Core intuition:

- > In Beta-Bernoulli Process (BP) [1], dictionary atoms relate to the training data under a set of Bernoulli distributions.
- > Different sets of Bernoulli distribution are used for separate classes to induce discrimination in the dictionary.
- > The same Bernoulli distributions are forced to be used in joint learning of the classifier, to encode class-wise dictionary atom popularity in the classifier.
- \succ The sparse codes of test samples use the popular atoms of the correct class more frequently, thereby easily classified by the classifier.
- \succ The non-parametric nature of the BP is exploited in determining the desired dictionary and classifier sizes.

References:

[1] J. Paisley and L. Carin. Nonparametric factor analysis with beta process priors. ICML, 2009.

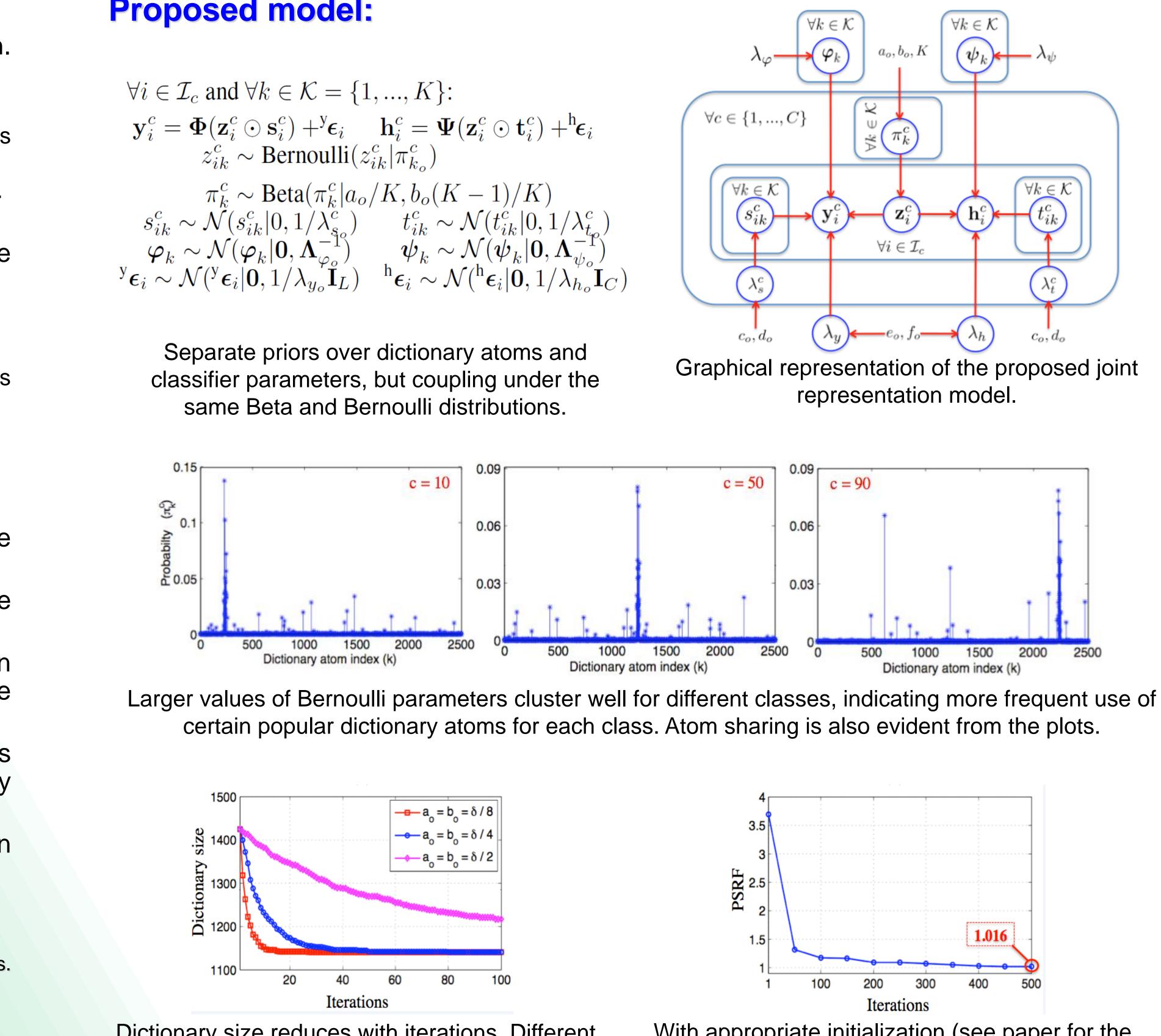
Acknowledgement:

This research was supported by ARC Discovery grant DP160101458 and it received funding from ARENA as part of ARENA's Research and Development Programme.

Joint Discriminative Bayesian Dictionary and Classifier Learning

Naveed Akhtar, Ajmal Mian and Fatih Porikli {naveed.Akhtar, fatih.porikli}@anu.edu.au; {naveed.akhtar, ajmal.mian}@uwa.edu.au

Proposed model:



Dictionary size reduces with iterations. Different parameter values result in different reduction rates, but convergence to similar dictionaries.

With appropriate initialization (see paper for the procedure) dictionary converges within 500 Gibbs sampling iterations.

Results:

	Face Recognition on Extended YaleB					
-	Method	Accuracy %	Average Time (ms)			
-	DL-COPAR	86.47 ± 0.69	31.11			
Training:15 per	LC-KSVD1	87.76 ± 0.60	0.61			
subject.	LC-KSVD	89.73 ± 0.59	0.60			
Random face features Average learned atoms 567	D-KSVD	89.77 ± 0.57	0.61			
	SRC	89.71 ± 0.45	50.19			
	FDDL	90.01 ± 0.69	42.82			
	DBDL	91.09 ± 0.59	1.07			
	JBDC (Proposed)	92.14 ± 0.52	1.02			

- Five-fold cross validation.
- Spatial Pyramid Features

•	Deep features	
	as input	

- Classification time per sample is 6.2ms.
- LC-3001 atoms learned for D-K LC-1 training with 30 samples per DB] class. JBI

Demo/Code available at: http://staffhome.ecm.uwa.edu.au/~00053650/code.html

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Eaco Pocognition on Extended ValoR

Action Recognition on Fifteen Scene Category

Method	Accuracy %	Time	
FDDL	94.08 ± 0.43	57.99	
D-KSVD	95.12 ± 0.18	0.58	
LC-KSVD1	95.37 ± 0.28	0.59	
SRC	95.41 ± 0.13	78.33	
DL-COPAR	96.02 ± 0.28	55.67	
LC-KSVD	96.38 ± 0.29	0.59	
DBDL	96.98 ± 0.28	0.71	
JBDC (Proposed)	97.73 ± 0.21	0.70	

Object Recognition on Caltech-101

Training samples	5	10	15	20	25	30
SRC	76.23	79.99	81.27	83.48	84.00	84.51
DL-COPAR	76.11	80.40	83.44	84.01	84.85	85.03
FDDL	78.31	81.37	83.37	84.76	85.66	85.98
LC-KSVD1	79.03	82.86	84.13	84.65	86.10	86.94
D-KSVD	79.69	83.11	84.99	86.01	86.80	87.72
LC-KSVD	79.74	83.13	85.20	85.98	86.77	87.81
DBDL	80.11	84.03	85.99	86.71	87.97	88.81
JBDC (Proposed)	81.64	85.70	86.96	87.88	88.72	89.59