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Introduction Experiments Results
Problem: Motion blur from camera shake is a major problem in videos captured Dataset and Training: In total, 71 videos are collected, each with 3-5s running Quantitative Comparison:

by hand-held devices. Traditionally, video-based approaches can take advantage time, to generate 6708 synthetic blurry frames with ground truth. These frames
. . . . . . . . . . Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

of the abundant information across neighboring frames. are subsequently augmented with flipping, rotating and scaling, from which we
. . . Input 24.14/.859 30.52/.958 28.38/.914 27.31/.900 22.60/.852 29.31/.951 27.74/.939 23.86/.906 30.59/.976 26.98/.926 27.14/.918
. : . : : : Ccrop 2,146,560 128%x128 random patches. We used ADAM for optlmlzatlon. PSDEBLUR 2442/ 908 28.77/.952 25.15/.928 27.77/.928 22.02/.890 25.74/.932 26.11/.948 19.75/.822 26.48/.963 24.62/.938 25.08/.921
Challenge: Multi-frame alignment is a computationally expensive and fragile WEFA [0] 25.89/.910 32.33/.974 28.97/.931 2836/.925 23.99/.910 31.09/.975 28.58/.955 24.78/.926 31.30/.981 28.20/.960 28.35/.944
. . . . . DBN+SINGLE 25.7757/.901 31.15/.966 29.30/.946 28.38/.922 23.63/.885 30.70/.962 29.23/.959 25.62/.936 31.92/.983 28.06/.949 28.37/.941
procedure MethOdS that aggregate Informatlon mUSt be able to Identlfy Warplng DBN+NOALIGN 27.83/.940 33.11/.980 31.29/.973 29.73/.948 25.12/.930 32.52/.978 30.80/.975 27.28/.962 33.32/.989 29.51/.969 30.05/.964
artifacts from true contents. a task that requires high_|eve| scene understanding_ DBN+HOMOG. ~ 27.93/.945 3239/.975 30.97/.969 29.82/.948 24.79/.925 31.84/.972 30.46/.972 26.64/.955 33.15/.989 29.30/.969 29.73/.962
, DBN+FLOW 28.31/.956 33.14/.982 3092/.973 29.99/.954 25.58/.944 32.39/.981 30.56/.975 27.15/.963 32.95/.989 29.53/.975 30.05/.969

Proposal: We introduce a deep learning solution to video deblurring, where a
CNN is trained end-to-end to learn to accumulate information across frames. To
train this network, we collect a dataset of real videos recorded with high frame
rate cameras, and generate synthetic motion blur for supervision.

Approach

Network: An encoder-decoder network with symmetric skip connections is used,
which increases the receptive fields and is yet easy to train.

A i ; A
1 el i il i i A v |
I v :
|
Z ‘ . 7 ¢ 7 ¢ 7 ¢ ) v i
X N N 2] N 2o} N % N N
R IR PRI AR I P LB VR & o7 S AN DT YA NV SN I S G

Down-covolutional layer Up-covolutional layer Flat-covolutional layer — — Skip connection

The proposed DeblurNet architecture.

Realistic dataset: We collect real-world sharp videos at high frame rate (240fps),
and synthetically create blurred ones by accumulating a number of short
exposures to approximate a longer exposure.
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Schematic of dataset generation.

A selection of blurry/sharp pairs (split left/right respectively) from our ground truth dataset.

Effects of Multi-frame: The contribution of using a temporal window is analyzed
by keeping the same network architecture, but replicating the central reference
frame instead of stacking neighboring frames. The network is retrained with the
same hyper-parameters.

Effects of Alignment: Differently —nput

learned configurations based on  ** | s

alignment types are analyzed: +3 = rra—

no-alignment, homography @ +2 — DoTow

alignment, and optical flow =

alignment. Quantitative results  °
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Analysis on Learned Filters: To gain some insights of what DeblurNet learns,
we visualize three representative filters at FO. These are shown to preserve color
tone, extract edges, and detect warping artifacts respectively.
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Quantitative results from our test set, with PSNRs relative to the ground truth.

Qualitative Comparison:
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Qualitative comparisons to existing approaches.
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PSNR/MSSIM measurements for each approach, averaged over all frames, for 10 test datasets.
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