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Overview

Matching local image features is a key task in computer vision. 
For more than a decade, hand-crafted features such as SIFT have 
been used for this task. Recently, new features learned from data 
have been proposed and shown to improve on SIFT in terms of 
discriminative power. This work is dedicated to an extensive 
experimental evaluation of local features in a practical setting.

http://cvg.ethz.ch/research/local-feature-evaluation 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Motivation
Most learned features evaluated on patch pair classification task  
measuring false positive rate at 95% true positive rate (FPR95) [3] 
• Do better FPR95 scores translate to better matching 

performance? What is the impact of typical filtering steps?  
(e.g., Lowe’s ratio test and mutual nearest neighbor constraint to avoid ambiguous matches,  
 geometric verification to prune outliers requires good precision for manageable runtimes) 

• More matches between similar images do not necessarily 
imply a better performance under extreme illumination and 
viewpoint changes. How well do learned features perform  
under such conditions?

Benchmark
Single evaluation protocol to benchmark local image 
feature performance in a practical setting: 
• Raw image-to-image matching performance 

(under, e.g., blur, exposure, day-night, scale, rotation, planar, internet, etc.) 

• Image-based reconstruction performance 
(measuring impact of local feature matching performance on Bag-of-Words  
 image retrieval, Structure-from-Motion, and Multi-View Stereo)

Insights
• Patch classification performance does not translate 

to more complex image-based reconstruction task 
• Previous image-based reconstruction datasets too 

easy as a benchmark (Fountain, Herzjesu, South Building) 
• Learned features better than RootSIFT but not better 

than advanced hand-crafted features still better
• Learned features exhibit strong variation in 

performance for different datasets 
• Significant room for improvement, especially in the 

hard cases where all methods fail (e.g., day-night)
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Methods
• SIFT: RootSIFT [1] 
• SIFT-PCA: RootSIFT with PCA projection [4] 
• DSP-SIFT: Domain-size pooled SIFT [5] 
• ConvOpt: Learned descriptor using convex optim. [8] 
• DeepDesc: Deep learned descriptor [7] 
• TFeat: Shallow learned descriptor [2] 
• LIFT: Learned keypoint detector and descriptor [6] 
We used pre-trained networks provided by the authors.

SIFT SIFT-PCA DSP-SIFT ConvOpt DeepDesc TFeat LIFT

Dimensionality 128 80 128 73 128 128 128
Size [bytes] 128 320 512 292 512 512 512
Platform CPU CPU CPU GPU GPU GPU GPU
Extraction [s] 9.3 10.5 23.7 49.9 24.3 11.8 212.3
Matching [s] 0.14 0.11 0.14 0.10 0.14 0.14 0.14

Table 1. Key properties of the evaluated descriptors. Average tim-
ings reported for the Oxford5k dataset. Extraction speed includes
keypoint detection and are specified per image. Matching speed is
specified per image pair.

tured pattern around the building. Finally, Internet photo
collections present the descriptors with more challenges due
to the high variance in the input data. We test the de-
scriptors on the large-scale Internet datasets by Wilson and
Snavely [53]. Each dataset contains several thousand im-
ages of well-known landmarks across the world collected
from Flickr. To simulate a harder matching and recon-
struction scenario, each dataset is embedded into a distrac-
tor set of unrelated images. As such, the descriptors must
generalize well to the heterogeneity of Internet data to ro-
bustly handle effects such as large illumination and view-
point changes, repetitive structure, image compression and
distortion artifacts, or unrelated distractor images. Finally,
we evaluate the reconstruction performance on the large-
scale Cornell dataset by Crandall et al. [8]. The dataset
consists of 6,514 unstructured and uncalibrated images of
the Cornell campus. The images were taken in a relatively
sparse pattern during different seasons and times of the day
and thus pose extreme challenges to the descriptors in terms
of illumination and viewpoint changes. A subset of 348
images is equipped with ground-truth camera locations ob-
tained through surveying methods that we use to evaluate
the pose accuracy. We use the Oxford5k dataset [31] to train
the visual vocabulary for image matching.
Implementation. To enable comparability in the tim-
ings, all experiments were conducted on the same machine
with two 14-core Intel E5-2697 2.60GHz CPUs, 512GB of
RAM, and 4 NVIDIA Titan X. We use the SIFT imple-
mentation by VLFeat [50] and, for all other descriptors,
the open-source implementations and models provided by
the authors. Traditionally, the descriptor learning models
are trained on the multi-view correspondence dataset by
Brown et al. [6]. We choose their best-performing pre-
trained models, if multiple are provided. The descriptor
matching uses an efficient GPU implementation, and we use
COLMAP [37,40] for the SFM and MVS evaluation, while
CMVS [11] is used to cluster the larger datasets into more
manageable image clusters for the dense reconstruction.

3.2. Results and Discussion

Performance. Table 1 summarizes the key performance
properties for each descriptor including timings, memory
requirements, etc. on the Oxford5k dataset. The memory
footprint and the descriptor dimensionality have important

SIFT SIFT-PCA DSP-SIFT ConvOpt DeepDesc TFeat LIFT

Putative Match Ratio in %

Blur 3.7 5.7 7.0 5.2 4.6 4.2 6.5
JPEG 20.9 29.3 34.0 26.8 24.4 22.9 27.5
Exposure 33.0 34.1 35.3 32.8 10.4 31.2 34.9
Day-Night 5.5 6.8 6.2 7.2 3.6 5.5 5.4
Scale 12.1 25.2 23.4 23.8 23.0 21.5 19.6
Rotation 12.8 17.6 17.3 10.0 11.9 8.7 1.3
Scale-rotation 2.4 6.0 5.8 4.7 4.5 3.7 2.0
Planar 5.9 10.0 10.1 9.4 7.7 8.0 8.0
Non-planar 7.8 8.8 8.7 8.4 7.4 7.2 8.3
Internet 3.2 4.6 4.4 4.3 2.7 3.4 4.8

Precision in %

Blur 43.8 46.5 48.4 45.2 41.9 46.3 44.5
JPEG 98.5 96.5 98.3 94.1 91.6 95.8 95.9
Exposure 99.3 98.0 98.6 96.6 68.0 97.3 97.5
Day-Night 93.8 80.4 77.8 73.9 37.8 76.5 71.2
Scale 43.0 95.5 95.5 92.2 89.1 94.3 89.1
Rotation 33.2 33.1 33.1 32.2 32.3 32.3 7.9
Scale-rotation 32.8 46.7 46.8 42.3 39.1 43.9 18.7
Planar 33.9 37.3 39.9 34.3 32.5 33.6 33.2
Non-planar 43.3 42.2 43.1 38.4 34.5 39.3 40.4
Internet 39.8 40.3 39.7 35.6 27.2 36.6 37.1

Matching Score in %

Blur 3.7 5.5 6.8 4.9 4.1 4.0 6.2
JPEG 20.8 28.8 33.7 26.1 23.5 22.6 27.1
Exposure 32.8 33.5 34.9 31.8 9.1 30.5 34.2
Day-Night 5.3 5.9 5.5 5.8 1.8 4.7 4.3
Scale 11.7 24.4 22.8 22.6 21.3 20.7 18.2
Rotation 12.8 17.5 17.2 9.7 11.6 8.5 0.9
Scale-rotation 2.4 5.8 5.6 4.3 3.9 3.5 1.6
Planar 5.7 9.6 9.9 8.7 6.9 7.5 7.4
Non-planar 7.7 8.4 8.4 7.8 6.5 6.9 7.7
Internet 3.1 4.1 4.0 3.5 1.8 2.8 4.1

Recall in %.

Blur 17.0 22.4 27.2 20.0 16.9 17.0 17.9
JPEG 37.9 51.6 62.8 46.6 41.0 39.2 51.5
Exposure 79.0 81.0 84.1 76.5 18.2 73.1 64.0
Day-Night 25.6 29.2 26.2 28.9 8.4 22.9 19.3
Scale 22.4 84.0 73.9 76.1 71.9 68.9 98.4
Rotation 20.8 28.5 28.1 16.1 19.1 14.1 2.3
Scale-rotation 6.4 16.4 15.2 12.0 10.9 9.6 5.3
Planar 11.4 18.0 18.6 16.4 13.3 14.2 17.9

Table 2. Evaluation results for the descriptor benchmark by Heinly
et al. [16]. First, second, third best results highlighted in bold.

implications for the required storage capacity for large-scale
datasets, since we evaluate datasets containing thousands of
images with millions of descriptors. For example, the raw
SIFT keypoints and descriptors for Cornell already com-
prise ⇡ 11GB of data. Furthermore, the descriptor di-
mensionality impacts the speed of the descriptor matching,
which in practice has squared complexity in terms of the
number of features per image when using efficient exhaus-
tive GPU matching. Due to its low dimensionality, Con-
vOpt provides ⇡ 40% faster feature matching. Among the
different descriptors, there is a large variance in extraction
speed. In theory, when implemented efficiently, both SIFT-
PCA and DSP-SIFT have only small overhead over standard
SIFT. While ConvOpt is relatively slow to extract, it is sig-
nificantly faster in the matching stage due to its low dimen-
sionality. Conversely, TFeat is relatively fast to extract and
slower in the matching stage, similar to the other descriptors
with 128 dimensions. LIFT is the slowest method by a large
margin. In general, the extraction of the hand-crafted de-
scriptors is much faster as compared to the learned features
despite running on the CPU. As such, the learned features
are currently not a practical alternative for processing mil-
lions of images, such as in the streaming-based reconstruc-
tion pipeline by Heinly et al. [17] who report a throughput

• Evaluation using Structure-from-Motion and Multi-View Stereo 
• Exhaustive image matching for Fountain (11 images), Herzjesu (8 

images), South Building (128 images), Madrid Metropolis (1344 images), 
Gendarmenmarkt (1463 images), Tower of London (1576 images) 

• Image retrieval with matching against top-100 retrieved images for 
Alamo (2915 images), Roman Forum (2364 images), Cornell (6514 images)

Raw Matching Performance
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