## UNIVERSITY OF WOLLONGONG

**AUSTRALIA** 

# Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

## Introduction

#### **Motivation**

✓ Divergence between training and test data



### **Unsupervised Domain Adaptation**

- ✓ Data: labelled source + unlabeled target
- ✓ Task: recognition on target domain
- ✓ Challenge: distribution discrepancy  $\rightarrow$ performance degeneration

#### **Solution**

- ✓ Data centric approach
- ✓ Subspace centric approach

Key Ideas: find two coupled subspaces to obtain new representations of respective domains such that

- domain is preserved,
- $\max Tr(A)$  $\checkmark$  the distribution shift is small,

 $\checkmark$  the subspace shift is small.





Jing Zhang, Wanqing Li, Philip Ogunbona

Advanced Multimedia Research Lab, University of Wollongong, Australia

## **Proposed Method**

 $\checkmark$  the variance of target domain is maximized,

 $\max Tr(B^T S_t B)$ 

 $\checkmark$  the discriminative information of source

$$A^{T}S_{b}A$$
),  $\min_{A} Tr(A^{T}S_{w}A)$   
on shift is small.

 $\min_{A,B} Tr \left( \begin{bmatrix} A^T & B^T \end{bmatrix} \begin{bmatrix} M_s & M_{st} \\ M_{ts} & M_t \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} \right)$ 

$$\min_{A,B} \left\| A - B \right\|_F$$

**Overall:** 
$$\max_{A,B} \frac{\{Var.^{target}\} + \{Var.^{between}\}}{\{Dist.shift\} + \{Sub.shift\} + \{Var.^{within}\}}$$

## **Results on Synthetic Data**

## **Results on Real World Data**

### Results on Cross-domain Object Recognition (surf)

| Feature           | SURF  |       |       |       |       |       |       |       |                |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
| data              | Raw   | SA    | SDA   | GFK   | TCA   | JDA   | TJM   | SCA   | JGSA<br>primal |
| C→A               | 36.01 | 49.27 | 49.69 | 46.03 | 45.82 | 45.62 | 46.76 | 45.62 | 51.46          |
| $C \rightarrow W$ | 29.15 | 40.00 | 38.98 | 36.95 | 31.19 | 41.69 | 38.98 | 40.00 | 45.42          |
| $C \rightarrow D$ | 38.22 | 39.49 | 40.13 | 40.76 | 34.39 | 45.22 | 44.59 | 47.13 | 45.86          |
| $A \rightarrow C$ | 34.19 | 39.98 | 39.54 | 40.69 | 42.39 | 39.36 | 39.45 | 39.72 | 41.50          |
| $A \rightarrow W$ | 31.19 | 33.22 | 30.85 | 36.95 | 36.27 | 37.97 | 42.03 | 34.92 | 45.76          |
| $A \rightarrow D$ | 35.67 | 33.76 | 33.76 | 40.13 | 33.76 | 39.49 | 45.22 | 39.49 | 47.13          |
| $W \rightarrow C$ | 28.76 | 35.17 | 34.73 | 24.76 | 29.39 | 31.17 | 30.19 | 31.08 | 33.21          |
| $W \rightarrow A$ | 31.63 | 39.25 | 39.25 | 27.56 | 28.91 | 32.78 | 29.96 | 29.96 | 39.87          |
| $W \rightarrow D$ | 84.71 | 75.16 | 75.80 | 85.35 | 89.17 | 89.17 | 89.17 | 87.26 | 90.45          |
| $D \rightarrow C$ | 29.56 | 34.55 | 35.89 | 29.30 | 30.72 | 31.52 | 31.43 | 30.72 | 29.92          |
| $D \rightarrow A$ | 28.29 | 39.87 | 38.73 | 28.71 | 31.00 | 33.09 | 32.78 | 31.63 | 38.00          |
| $D \rightarrow W$ | 83.73 | 76.95 | 76.95 | 80.34 | 86.10 | 89.49 | 85.42 | 84.41 | 91.86          |
| Average           | 40.93 | 44.72 | 44.52 | 43.13 | 43.26 | 46.38 | 46.33 | 45.16 | 50.04          |

### Results on Cross-domain Object Recognition (Decaf)

| Feature           |       |       | $Decaf_6$ |        |       |
|-------------------|-------|-------|-----------|--------|-------|
| data              | JDA   | OTGL  | JGSA      | JGSA   | JGSA  |
| uata              |       |       | primal    | linear | RBF   |
| $C \rightarrow A$ | 90.19 | 92.15 | 91.44     | 91.75  | 91.13 |
| $C \rightarrow W$ | 85.42 | 84.17 | 86.78     | 85.08  | 83.39 |
| $C \rightarrow D$ | 85.99 | 87.25 | 93.63     | 92.36  | 92.36 |
| A→C               | 81.92 | 85.51 | 84.86     | 85.04  | 84.86 |
| $A \rightarrow W$ | 80.68 | 83.05 | 81.02     | 84.75  | 80.00 |
| A→D               | 81.53 | 85.00 | 88.54     | 85.35  | 84.71 |
| $W \rightarrow C$ | 81.21 | 81.45 | 84.95     | 84.68  | 84.51 |
| $W \rightarrow A$ | 90.71 | 90.62 | 90.71     | 91.44  | 91.34 |
| $W \rightarrow D$ | 100   | 96.25 | 100       | 100    | 100   |
| $D \rightarrow C$ | 80.32 | 84.11 | 86.20     | 85.75  | 84.77 |
| D→A               | 91.96 | 92.31 | 91.96     | 92.28  | 91.96 |
| $D \rightarrow W$ | 99.32 | 96.29 | 99.66     | 98.64  | 98.64 |
| Average           | 87.44 | 88.18 | 89.98     | 89.76  | 88.97 |

### Results on Cross-domain Digit Recognition

| data         | Raw   | SA    | SDA   | GFK   | TCA   | JDA   | TJM   | SCA   | JGSA primal |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|
| MNIST → USPS | 65.94 | 67.78 | 65.00 | 61.22 | 56.33 | 67.28 | 63.28 | 65.11 | 80.44       |
| USPS→MNIST   | 44.70 | 48.80 | 35.70 | 46.45 | 51.20 | 59.65 | 52.25 | 48.00 | 68.15       |
| Average      | 55.32 | 58.29 | 50.35 | 56.84 | 53.77 | 63.47 | 57.77 | 56.56 | 74.30       |

### Results on Cross-dataset Action Recognition

| data    | Raw   | SA    | SDA   | TCA   | JDA   | TJM   | SCA   | JGSA linear |
|---------|-------|-------|-------|-------|-------|-------|-------|-------------|
| MSR→G3D | 72.92 | 77.08 | 73.96 | 68.75 | 82.29 | 70.83 | 70.83 | 89.58       |
| G3D→MSR | 54.47 | 68.09 | 67.32 | 50.58 | 65.37 | 63.04 | 55.25 | 66.93       |
| MSR→UTD | 66.88 | 73.75 | 73.75 | 65.00 | 77.50 | 65.00 | 64.38 | 76.88       |
| UTD→MSR | 62.93 | 67.91 | 66.67 | 57.63 | 61.06 | 60.12 | 55.14 | 61.37       |
| MSR→MAD | 80.71 | 85.00 | 83.57 | 79.29 | 82.86 | 82.14 | 78.57 | 86.43       |
| MAD→MSR | 80.09 | 81.48 | 80.56 | 81.02 | 83.33 | 79.63 | 79.63 | 85.65       |
| Average | 69.67 | 75.55 | 74.30 | 67.05 | 75.40 | 70.13 | 67.30 | 77.81       |



| JGSA   | JGSA  |
|--------|-------|
| linear | RBF   |
| 52.30  | 53.13 |
| 45.76  | 48.47 |
| 48.41  | 48.41 |
| 38.11  | 41.50 |
| 49.49  | 45.08 |
| 45.86  | 45.22 |
| 32.68  | 33.57 |
| 41.02  | 40.81 |
| 90.45  | 88.54 |
| 30.19  | 30.28 |
| 36.01  | 38.73 |
| 91.86  | 93.22 |
| 50.18  | 50.58 |
|        |       |



## **Parameter Sensitivity**



## Conclusions

A novel framework for unsupervised domain adaptation is proposed, where

- $\checkmark$  both geometrical and statistical shifts are reduced.
- $\checkmark$  both shared and specific features are exploited,
- $\checkmark$  the state-of-the-art results are obtained on both synthetic data and real world datasets.

## **References**

[1] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Transactions on Neural Networks, 2011.

[2] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, "Unsupervised visual domain adaptation using subspace alignment," IEEE ICCV, 2013.

[3] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang, "Scatter component analysis: A unified framework for domain adaptation and domain generalization," IEEE TPAMI, 2016.

[4] M. Long, J. Wang, G. Ding, J. Sun, and P. Yu, "Transfer feature learning with joint distribution adaptation," IEEE ICCV, 2013.