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Introduction
Heterogeneous motion blur removal:
• Recovering a blur-free latent image from a single 

observation with heterogeneous motion blur.
• The blur kernels may independently vary from pixel to 

pixel. 
Motion flow based blur model:
• Heterogeneous blur model:

• Pixel-wise linear motion blur kernel.
• Motion flow                   .    
Existing methods: iterative optimization based 
methods [2], patch-based learning methods [1].
Limitations: limited	motion	type,	manually	defined	prior,	
time-consuming.

Contributions
We propose a deep neural network based method able 
to directly estimate a pixel-wise motion flow map from a 
single blurred image. 
Core contributions:
• We estimate and remove pixel-wise motion blur by 

training on simulated examples. Our method uses a 
flexible blur model and makes almost no assumptions
about the underlying images, resulting in 
effectiveness on diverse data. 

• We introduce a universal FCN for end-to-end
estimation of dense heterogeneous motion flow from 
a single blurry image. The proposed method utilizes 
the spatial context over a wider area, and does not 
require any post-processing.

Estimating	Motion	Flow	for	Blur	Removal
Deblurring: Given	a	blurred	image	Y,	estimate	the	motion	flow	map					using	the	learned	
end-to-end	estimation	model	(FCN)																		. Then	we	recover	the	unblurred image	X via	
non-blind	deconvolution.						

Learning: Learn	the	FCN	from	a	set	of	training	data																						.	

Estimating	Motion	Flow	as	Classification:
• Adopt	integer domain	for	both	U and	V. 
• Restrict	motion in the horizontal direction to be nonnegative. 
• Treat	motion	flow	estimation	as	classification.

Training	Data	Generation
Generating	Training	Data	by	Simulating	Camera	Motion: Simulate a motion flow       by 
sampling four additive components -- translations along x, y and z axis and rotation
around z axis: 

• Sample	motion	parameters	à directly	generate	2D	motion	flow	map.
• Generate	training	data	on	BSD500	(200	sharp	images).
• Training	on	10200	samples																							(T=10,200).

Synthetic	Data: Test	on	synthetic	datasets	generated	using	BSD500	and	Microsoft	COCO.

Real-world	images: Evaluation	the	motion	flow	estimation	and	image	recovering	on	real-world	images.

Experiments
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Dataset patchCNN [1]	 noMRF[1] Ours

BSD-S 50.1168	 54.4863	 6.6198	
BSD-M 15.6389 20.7761	 5.2051	
MC-S 52.1234	 60.9397	 7.8038	
MC-M 22.4383	 31.2754	 7.3405	

Mean Squared Error (MSE)

Blurred image Ground truth patchCNN [1] Ours

*More details 
and results 
in our paper 
and the 
project page:
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