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Introduction Estimating Motion Flow for Blur Removal Experiments

Heterogeneous motion blur removal:
» Recovering a blur-free latent image from a single

Deblurring: Given a blurred image Y, estimate the motion flow mapM using the learned

Mean Squared Error (MSE)
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Synthetic Data: Test on synthetic datasets generated using BSD500 and Microsoft COCO.
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Real-world images: Evaluation the motion flow estimation and image recove
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Existing methods: iterative optimization based
methods [2], patch-based learning methods [1].
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Estimating Motion Flow as Classification:
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Limitations: limited motion type, manually defined prior,
time-consuming.

Adopt integer domain for both U and V.
Restrict motion Iin the horizontal direction to be nonnegative.
Treat motion flow estimation as classification.

Feasible Domain of U and V
o

Contributions

We propose a deep neural network based method able
to directly estimate a pixel-wise motion flow map from a
single blurred image.

Core contributions:

* We estimate and remove pixel-wise motion blur by
training on simulated examples. Our method uses a
flexible blur model and makes almost no assumptions
about the underlying images, resulting in
effectiveness on diverse data.

We introduce a universal FCN for end-to-end
estimation of dense heterogeneous motion flow from
a single blurry image. The proposed method utilizes
the spatial context over a wider area, and does not
require any post-processing.

Training Data Generation

Generating Training Data by Simulating Camera Motion: Simulate a motion flow ¥ by
sampling four additive components -- translations along x, y and z axis and rotation

d z axis:
around z axis M= Mg + MTy + My, + Mg,

* Sample motion parameters = directly generate 2D motion flow map.
* G@Generate training data on BSD500 (200 sharp images).
Training on 10200 samples {(Y*, M)
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(c) Sun et.al. [1]

Reference

(a) Blurry image (b) Whyte et.al. [3]
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(c) z-axis translation (d) z-axis rotation

(a) Sharp Image

(b) x and y-axis translation (e) Arbitrary sampled motion

*More details
and results
in our paper
and the
project page:
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