

From Motion Blur to Motion Flow: a Deep Learning Solution for Removing Heterogeneous Motion Blur

Dong Gong^{1,2}, Jie Yang², Lingqiao Liu^{2,3}, Yanning Zhang¹, Ian Reid^{2,3}, Chunhua Shen^{2,3}, Anton van den Hengel^{2,3}, Qinfeng (Javen) Shi² ¹Northwestern Polytechnical University, Xi'an, China, ²The University of Adelaide, Australia, ³Australian Centre for Robotic Vision Website: https://donggong1.github.io/blur2mflow.html

Introduction

Heterogeneous motion blur removal:

- Recovering a blur-free latent image from a single observation with heterogeneous motion blur.
- The blur kernels may independently vary from pixel to pixel

Motion flow based blur model:

• Heterogeneous blur model:

$$\mathbf{Y} = \mathcal{K} * \mathbf{X} + \mathbf{N}$$

$$\mathcal{K} * \mathbf{X} = \sum_{i',j'} \mathcal{K}_{(i,j)}(i',j') \mathbf{X}(i+i',j+j')$$

- Pixel-wise linear motion blur kernel.
- Motion flow $\mathcal{M} = (\mathbf{U}, \mathbf{V})$.

Existing methods: iterative optimization based methods [2], patch-based learning methods [1]. **Limitations:** limited motion type, manually defined prior, time-consuming.

Contributions

We propose a deep neural network based method able to directly estimate a pixel-wise motion flow map from a single blurred image.

Core contributions:

- We estimate and remove pixel-wise motion blur by training on simulated examples. Our method uses a flexible blur model and makes almost no assumptions about the underlying images, resulting in effectiveness on diverse data.
- We introduce a universal FCN for end-to-end estimation of dense heterogeneous motion flow from a single blurry image. The proposed method utilizes the spatial context over a wider area, and does not require any post-processing.

MLD -

Estimating Motion Flow for Blur Removal

<u>**Deblurring:**</u> Given a blurred image Y, estimate the motion flow map $\mathcal M$ using the learned

Learning: Learn the FCN from a set of training data $\{(\mathbf{Y}^t, \mathcal{M}^t)\}_{t=1}^T$.

Estimating Motion Flow as Classification:

- Adopt integer domain for both U and V.
- Restrict motion in the horizontal direction to be nonnegative.
- Treat motion flow estimation as classification.

Training Data Generation

Generating Training Data by Simulating Camera Motion: Simulate a motion flow \mathcal{M} by sampling four additive components -- translations along x, y and z axis and rotation around z axis:

$$\mathcal{M} = \mathcal{M}_{T_x} + \mathcal{M}_{T_y} + \mathcal{M}_{T_z} + \mathcal{M}_{R_z}$$

• Sample motion parameters \rightarrow directly generate 2D motion flow map. • Generate training data on BSD500 (200 sharp images).

• Training on 10200 samples $\{(\mathbf{Y}^t, \mathcal{M}^t)\}_{t=1}^T$ (*T*=10,200).

(b) x and y-axis translation (a) Sharp Image

(c) z-axis translation

Experiments

 $\mathbb{D}_{u}^{+} = \{ u | u \in \mathbb{Z}_{0}^{+}, |u| \leq u_{max} \}$ Feasible Domain of U and V

(e) Arbitrary sampled motion

Synthetic Data: Test on synthetic datasets generated using BSD500 and Microsoft COCO.

Mean Squared Error (MSE)

Dataset	patchCNN [1]	noMRF[1]	Ours
BSD-S	50.1168	54.4863	6.6198
BSD-M	15.6389	20.7761	5.2051
MC-S	52.1234	60.9397	7.8038
MC-M	22.4383	31.2754	7.3405

<u>Real-world images</u>: Evaluation the motion flow estimation and image recovering on real-world images.

(a) Blurry image

(a) Blurry image

(b) Whyte *et.al*. [3]

(b) Xu and Jia [4]

[1] J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional neural network for non-uniform motion blur removal. In CVPR, 2015. [2] T. H. Kim and K. M. Lee. Segmentation-free dynamic scene deblurring. In CVPR, 2014. [3] O.Whyte, J.Sivic, A.Zisserman, and J.Ponce. Non-uniform deblurring for shaken images. IJCV, 2012. [4] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. In ECCV, 2010.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

(c) Sun *et.al.* [1]

(d) Ours

*More details and results in our paper and the project page:

(c) Sun *et.al.* [1]

(d) Ours

Reference