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Confidence measures and local consistencyConfidence measures and local consistency
In stereo matching, confidence measures provide a per-pixel 

estimation of the correctness of the assigned disparity 
 Our proposal: using confidence prediction from the neighboring 

pixel to improve the effectiveness of the measure 
 Processing confidence maps (e.g., depicted by PKR measure), we 

obtain a new map (e.g., we call, in this case, PKR+)

Enforcing local consistency with deep learningEnforcing local consistency with deep learning
 Patch-based CNN trained to enforce local consistency for a single 

confidence measure

 Perceptive field: 9x9
 Four convolutional layer (3x3), each extracting 128 feature maps
 Two convolutional layers (1x1), each extracting 384 feature maps 
 Final regression neuron
 Trained by Stocastic Gradient Descent (SGD), minimizing binary 

cross entropy as loss function (BCE)

Experimental resultsExperimental results
 Training on KITTI 2012 (20 images, T=3), evaluation on the KITTI 

2012, KITTI 2015 and Middlebury v3 datasets. Stereo algorithm 
AD-CENSUS (and MC-CNN, in the paper)

 Testing on 18 confidence measures from literature [1]

 Testing on 5 state-of-the-art machine-learning techniques: 
Enseble [2], GCP [3], Park [4], O1 [5], CCNN [6]

 Exploiting local consistency with our network always improves the 
input confidence measure in term of AUC from Δ=75% to 9% 
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Source code and trained networks
http://vision.disi.unibo.it/~mpoggi/code.html

Building the training setBuilding the training set
 Compute disparity maps and confidence maps, according to given 

stereo algorithm and confidence measure, on stereo images with 
available ground-truth (e.g., from KITTI or Middlebury datasets)

 For each pixel, compare the computed disparity with the available 
ground-truth

 Fixing a threshold T, label as correct (1) pixels having a disparity 
error lower than T, or wrong (0) if greater.

 Train the network on the obtained binary labels

Impact of the amount of training dataImpact of the amount of training data
 We train on a subset of images from KITTI 2012 (20 images, T=3)
 Each pixel with available ground-truth represent a training sample 
 Training with 5, 15, 25 and 35 images

(about 0.7, 1.5, 2.0, 2.7 and 3.5 million samples)
 Evaluation of the networks on Middlebury v3
 Δ= (AUC – AUC+)/(AUC - AUCopt)
 (Train on Middlebury v3. → only 1.2% better)
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