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Target-driven Visual Navigation in Indoor Scenes using 
Deep Reinforcement Learning, Zhu et al., ICRA 2017

Human-level control through deep 
reinforcement learning, Mnih et al., Nature 

2014

End-to-End Training of Deep Visuomotor 
Policies, Levine et al., JMLR 2015 Control of Memory, Active Perception, and Action in 

Minecraft, Oh et al., ICML 2016
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Policy Training 
using DAGGERExpress Value Iteration Algorithm as a convolutional neural 

network making planning trainable, and differentiable [VIN].

•Trained and tested in static simulated real-world 
environments. 

•Testing environment is different from training environment 

•Robot  

•Robot lives in a grid world. Motion is discrete. 

•Robot has 4 macro-actions, 

•Go Forward, Turn left, Turn right, Stay in place. 

•Robot has access to precise ego-motion. 

•Robot has RGB or Depth Cameras 

•Geometric Task 

•Goal is sampled to be at most 32 time steps away. Agent 
is run for 39 time steps 

•Semantic Task 

•‘Go to a Chair’, agent run for 39 time steps

Classical Approaches 

•Over-complete - Precise reconstruction of everything is not 
necessary 

•Incomplete - Only geometry, no semantics. Nothing is known till it 
is explicitly observed, fail to exploit the structure of the world. 

•Separation between mapping and planning. 

Modern Approaches 

•Ignore structure of the problem
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Methods

RGB Input Depth Input

Mean 
Distance

%ile 
Distance Success 

Rate (%)
Mean 

Distance

%ile 
Distance Success 

Rate (%)
50th 75th 50th 75th

Initial 16.2 17 25 11.3 16.2 17 25 11.3

React 4 14.2 14 22 23.4 14.2 13 23 22.3

LSTM 13.5 13 20 23.5 13.4 14 23 27.2

Our(CMP) 11.3 11 18 34.2 11.0 9 19 40.0

Semantic Task
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Failed Navigations
Backtracking
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Methods

RGB Input Depth Input

Mean 
Distance

75th %ile 
Distance

Success 
Rate (in %)

Mean 
Distance

75th %ile 
Distance

Success 
Rate (in %)

Initial 25.3 30 0.7 25.3 30 0.7

No Image 20.8 28 0.7 20.8 28 0.7

React 1 20.9 28 8.2 17.0 26 21.9

React 4 14.4 25 30.4 8.8 18 56.9

LSTM 10.3 21 53 5.9 5 71.8

Our(CMP) 7.7 14 62.5 4.8 1 78.3

Analytic Map 8.0 14 62.9
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