Problem Statement

Cognitive Mapping and Planning for Visual Navigation

Saurabh Gupta

Robot navigation in novel environments

Robot equipped with
a first person camera

Motivation

Dropped into a novel
environment it has not
been in before.

“Go Find me
a Chair”

Navigate in the
environment

COGNITIVE MAPS IN RATS AND MEN*

Apparatus ysed in preliminary training
Fro. 15

(From E. C. Tolman, B, ¥, Ritchie and D. Kalish, Studies in
spatial learning. 1. Orientatlon and the short-cut. J. exp. Pry-
chol., 1946, 36, p. 16.)

Classical Approaches
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Apparstus wsed in the test trial

Fio. 16 Fi0. 17

" {(From E. C. Tolman, B, F. Ritchie and D.

Secondly, we assert that the central
office itself is far more like a map con-
trol room‘than it is like an old-fashioned
telephone exchange. ‘The stimuli, which
are allowed in, are not connected by
just simple one-to-one switches to the
outgoing responses. Rather, the incom-
ing impulses are usually worked over
and elaborated in the central control
room into a tentative, cognitive-like
map of the environment. And it is this
tentative map, indicating routes and
paths and environmental relationships,
which finally determines what responses,

iy 1 G 1o e 1 . P, 1 6, Kb Soi it e 300 if any, the animal will finally release.
1946, 36, p. 19.)

Modern Approaches

Human-level confrol through deep
reinforcement learning, Mnih et al., Nature
2014

End-to-End Training of Deep Visuomotor
Policies, Levine et al., JMLR 2015

Classical Approaches
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Target-driven Visual Navigation in Indoor Scenes using

Deep Reinforcement Learning, Zhu et al., ICRA 2017
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Control of Memory, Active Perception, and Action in
Minecraft, Oh et al., ICML 2016

e Over-complete - Precise reconstruction of everything is not

necessary

e Incomplete - Only geometry, no semantics. Nothing is known fill it
is explicitly observed, fail to exploit the structure of the world.
e Separatfion between mapping and planning.

Modern Approaches
® [gnore structure of the problem

James Davidson

Sergey Levine

Rahul Sukthankar

Google, UC Berkeley
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Planner

Express Value lteration Algorithm as a convolutional neural

network making planning trainable, and differentiable [VIN].

locally, then can be

Max Pooling over
channels

Learned Value

If actions move the agent

computed using convolutions

Jitendra Malik

Code, data &
models onlinel
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~ Confidence and free space prediction Confidence and free space prediction from
A from previous time step. previous time step, warped using egomotion.
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Resulis

Geometric Task

e Trained and tested in static simulated real-world

environments.

® Testing environment is different from training environment

® Robot

e Robot lives in a grid world. Motion is discrete.

® Robot has 4 macro-actions,

.

® Go Forward, Turn left, Turn right, Stay in place.

e Robot has access to precise ego-motion.

® Robot has RGB or Depth Cameras

® Geometric Task

® Goalis sampled to be at most 32 fime steps away. Agent  analytic Map

is run for 39 tfime steps
® Semantic Task

e ‘Go to a Chair’, agent run for 39 time steps

Value Function Visualization®

RGB Input Depth Input
Methods Mean 75th %ile  Success Mean 75th %ile  Success
Distance  Distance Rate (in %) Distance  Distance Rate (in %)
Initial 25.3 30 0.7 25.3 30 0.7
No Image 20.8 28 0.7 20.8 28 0.7
React 1 20.9 28 3.2 17.0 26 21.9
React 4 14.4 25 30.4 8.8 18 56.9
LSTM 10.3 21 53 5.9 S /1.8
Our(CMP) 7.7 14 62.5 4.8 1 78.3
8.0 14 62.9
Semantic Task
RGB Input Depth Input
Toile Toile
Methods Mean Distance  Success Mean Distance  Success
Distance 50th 75th Rate (%) Distance 50th 75th Rate (%)
Initial 16.2 17 25 11.3 16.2 17 25 11.3
React 4 14.2 14 22 23.4 14.2 13 23 22.3
LSTM 13.5 13 20 23.5 13.4 14 23 27.2
Our(CMP) 11.3 11 18 34.2 11.0 ? 19 40.0

Successful Navigations

Backiracking

Missed entrances

[VIN] Value lteration Networks. Tamar, Wu, Thomas, Levine, and
Abbeel. NIPS 2016.
3D semantic parsing of large-scale indoor spaces. Armeni,
Sener, Zamir, Jiang, Brilakis, Fischer, Savarese. CVPR 2016.

A Reduction of Imitation Learning and Structured Prediction to
No-Regret Online Learning. Ross, Gordon & Bagnell. AISTATS 2011.



