Cognitive Mapping and Planning for Visual Navigation Saurabh Gupta James Davidson **Rahul Sukthankar** Sergey Levine

Problem Statement

Robot navigation in novel environments

Robot equipped with a first person camera

Dropped into a novel environment it has not been in before.

Navigate in the environment

Motivation

COGNITIVE MAPS IN RATS AND MEN¹

BY EDWARD C. TOLMAN

University of California

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and short-cut. J. exp. Psychol., 1946, 36, p. 17.)

Secondly, we assert that the central office itself is far more like a map control room than it is like an old-fashioned telephone exchange. The stimuli, which are allowed in, are not connected by just simple one-to-one switches to the outgoing responses. Rather, the incoming impulses are usually worked over and elaborated in the central control room into a tentative, cognitive-like map of the environment. And it is this tentative map, indicating routes and paths and environmental relationships, which finally determines what responses, f any, the animal will finally release.

Classical Approaches

Mapping

Planning

End-to-End Training of Deep Visuomotor Policies, Levine et al., JMLR 2015

Classical Approaches

- Over-complete Precise reconstruction of everything is not necessary
- Incomplete Only geometry, no semantics. Nothing is known till it
- is explicitly observed, fail to exploit the structure of the world.
- Separation between mapping and planning.

Modern Approaches

• Ignore structure of the problem

Modern Approaches

Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning, Zhu et al., ICRA 2017

Control of Memory, Active Perception, and Action in Minecraft, Oh et al., ICML 2016

$$Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$$
 is $V_{n+1}(s) = \max_a Q_n(s,a) \quad \forall s \in \mathbb{R}$

Results	Geometric Task							
 Trained and tested in static simulated real-world 		RGB Input			Depth Input			
environments. Testing environment is different from training environment 	Methods	Mean Distance	75th %ile Distance	Success Rate (in %)	Mean Distance	75th %ile Distance	Success Rate (in %)	
	Initial	25.3	30	0.7	25.3	30	0.7	
 Robot Robot lives in a grid world. Motion is discrete. Robot has 4 macro-actions, Go Forward, Turn left, Turn right, Stay in place. Robot has access to precise ego-motion. Robot has RGB or Depth Cameras 	No Image	20.8	28	0.7	20.8	28	0.7	
	React 1	20.9	28	8.2	17.0	26	21.9	
	React 4	14.4	25	30.4	8.8	18	56.9	
	LSTM	10.3	21	53	5.9	5	71.8	
• Geometric Task	Our(CMP)	7.7	14	62.5	4.8	1	78.3	
 Goal is sampled to be at most 32 time steps away. Agent is run for 39 time steps 	Analytic Map				8.0	14	62.9	
 Semantic Task 'Go to a Chair', agent run for 39 time steps 	Semantic	: Task						
Value Function Visualization*			RGB Input			Depth Inpu	t	

Mean Distance 16.2 14.2 React 4

13.5

11.3

Robot

- Robot liv Robot he
- Go Fo
- Robot he Robot he

• Geometric

- Goal is so is run for
- Semantic Tas
 - 'Go to a

Value Functio

RGB Input				Depth Input					
%ile Distance 60th 75th		Success Rate (%)		Mean Distance	%ile Distance 50th 75th		Success Rate (%)		
17	25	11.3	-	16.2	17	25	11.3		
14	22	23.4		14.2	13	23	22.3		
13	20	23.5		13.4	14	23	27.2		
11	18	34.2		11.0	9	19	40.0		

Successful Navigations

Read Out Mapper Representation

[VIN] Value Iteration Networks. Tamar, Wu, Thomas, Levine, and Abbeel. NIPS 2016.

3D semantic parsing of large-scale indoor spaces. Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, Savarese. CVPR 2016. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. Ross, Gordon & Bagnell. AISTATS 2011.