
Experiment setting

• MatConvNet toolbox, i7-4790K CPU, Nvidia Titan X GPU.

• Trained on VOT dataset & evaluated on OTB-100 dataset.

• ADNet (𝑁𝐼: 3000, 𝑁𝑂: 250, 𝐼: 10) → 3 fps (Prec: 88%)

• ADNet-fast (𝑁𝐼: 300, 𝑁𝑂: 50, 𝐼: 30) → 15 fps (Prec: 85%)

Analysis on action

• 93% of total frames have 

smaller than 5 actions

Self-comparison

• init: no pre-training, only online adaptation

• SL: supervised learning 

• SS: uses 1/10 gt annotations  

• RL: reinforcement learning

OTB-100 test results

Sequential actions selected by ADNet
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Visual tracking

• Find the target position in a new frame.

• Deep CNN-based tracking method (Tracking-by-detection)

Problem

• Inefficient search strategy.

• Need lots of labeled video frames to train CNNs.

Motivation Action-Decision Networks (ADNet) Experiments

Problem setting (Markov decision process)

Action-Decision Network

Training method
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Approach

Action-driven tracking

• Dynamically capture the target by selecting sequential actions.

• Comparison with existing method.

• Action: 𝑎𝑡 , defined by discrete actions 

Scale changes StopTranslation moves

• State: 𝑠𝑡 = 𝑝𝑡 , 𝑑𝑡
Image patch: 𝑝𝑡 ∈ ℝ112∗112∗3

Action dynamics: 𝑑𝑡 ∈ ℝ110

• Reward: 

𝑟 𝑠𝑡 = ቊ
1, if 𝐼𝑂𝑈 𝑝𝑡 , 𝐺 > 0.7

−1, otherwise

…

Previous frame CNN-based tracker [1] Our method
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• Reinforcement learning

 Can handle the semi-supervised case.

 Run tracking to a piece of training sequence.

 Get trajectory of states, actions, and rewards { 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 }.

 By REINFORCE algorithm,

 Train policy network to maximize the expected tracking 

rewards.

Training videos 

…

state-action pairs

• Supervised learning

 Generate training samples of state-action pairs.

 Train policy network as multiclass classification with softmax.

 Then, reinforcement learning is performed to improve ADNet.
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[1] H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking., CVPR 2016.

256 samples Avr. 5 actions

Online Tracking

 Initial fine-tuning with 𝑁𝐼 initial samples.

 Online adaptation on every 𝐼 frames with 𝑁𝑂 online samples.

 Re-detection is conducted when the target is missed.

(𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑡 , 𝑎𝑡)
(𝑠𝑡+1, 𝑎𝑡+1, … , 𝑠𝑙 , 𝑎𝑙)


