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Summary

» Affordances
> Affordances are attributes of object parts which indicate functionality
> Detecting affordances can be viewed as a multichannel image segmentation problem
» Problems
> Affordance segmentation is more difficult than object segmentation due to object parts associated with multiple affordances and the higher level of
abstraction: A system should detect affordances of previously unseen classes
> No datasets of object affordances in context available
> Pixel wise annotations are expensive, a weakly supervised training method is desirable
» Contributions

> CAD120 affordance dataset introduced: Pixelwise annotated object affordances in human context
> Weakly and strongly supervised affordance segmentation methods proposed, both generalize affordances to object classes absent in train set
> Weakly supervised method is the state of the art in affordance segmentation, outperforming existing image segmentation methods

» Code and new data set publicly available

CAD120 affordance dataset

Image  open cut contain  pour support hold

Figure 1: Examples of pixel wise annotations from our CAD120 affordances dataset (left) and example images of the UMD part affordance dataset [4] (right)

We propose a new dataset showing objects in context with pixel wise affordance annotations
» 3090 video frames from the CAD 120 dataset [5] depicting 9916 object instances in context of human interaction
» 6 affordances: open, cut, pour, contain, support, hold

» 12 object classes: table, palte, thermal cup, medicine box, microwave, bowl, coffee pot, bottle, knife, can, paper box, mug
» Human poses available for all frames

» Available at https://zenodo.org/record /495570
For evaluation we also use the UMD part affordance dataset [4].

Strongly Supervised Method

We adapt the VGG and ResNet architectures from [6] by exchanging the final softmax layer for a sigmoid layer.
The prediction is given by
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where f;;(y;|I;0) is the output of the CNN at pixel x; and affordance [ without the softmax layer.
Training means minimizing
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J(0) =log P(Y|I;6) = > > log P(y,|1;0), (2)
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Where Y is the ground truth labeling of the pixels, L is the set of affordances, 6 are the CNN parameters and I is the image.
For inference we threshold at 0.5:

. )1 i Py, Z;) > 0.5
St = 0 otherwise.
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Weakly Supervised Method

Our EM-algorithm, in practice we use two M-steps and 1 E-step.
Where [: affordance class, 7: pixel, £: key point, x;: spatial pixel coordinate, x;: spatial coordinate of affordance key point, Z,: set of affordance key points.
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Initialization of pixelwise labels:
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Results intra object class affordance generalization

affordances not present in the image

Refine segmentation for each affordance by
GrabCut
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In this setup, all object classes occur in the train as well as in the test set.

Table 1: Evaluation of fu

Evaluation metric is loU. We could improve our method in [7].

Results with cross object class generalization

None of the object classes from the test set is present in the train set.

Table 2: Evaluation of ful

UMD dataset (category split) | Grasp | Cut | Scoop | Contain | Pound | Support | Wgrasp | mean
Fully Supervised loU category split

HMP + SVM [4] 057 | 037 | 0.70 | 0.77 | 0.41 | 0.49 0.79 | 0.59

DEP + SRF [4] 0.35 | 0.15| 0.38 0.65 0.18 0.26 0.80 | 0.40
Proposed (VGG) 0.66 | 0.77| 085 | 084 | 064 | 0.73 | 082 |0.76
Proposed (ResNet) 0.71 0.79/ 0.86 086 | 0.72 | 055 | 0.84 0.76

Weakly Supervised loU category split

Proposed (VGG) 046 048 0.72 | 0.78 | 044 053 | 0.65 | 0.58
Proposed [7] (VGG) 055048 0.72 | 076 | 0.49 | 0.48 0.67 | 0.59
Proposed (ResNet) 042 {035 067 | 070 | 0.44 | 044 | 0.77 | 0.54
Proposed [7] (ResNet) 0.57 0.54| 0.71 | 0.70 | 0.43 | 0.54 0.69 |0.60
Image label [3] 0.06 | 0.19 | 0.04 0.22 0.12 0.02 0.08 | 0.10

Area constraints [3] 0.06 1 0.04 010 | 0.14 | 0.22 | 0.04 0.37 | 0.14
SEC [1] 0.39 | 0.16 | 0.27 0.13 0.35 0.19 0.07 | 0.22

WTP [2] 0.16 | 0.14 | 0.20 0.20 0.01 0.07 0.13 | 0.13
ly and weakly supervised approaches for affordance detection on t

Evaluation metric is loU. We could improve our method in [7].
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UMD dataset (novel split) | Grasp | Cut | Scoop | Contain | Pound | Support | Wgrasp | mean
Fully Supervised loU novel split
HMP + SVM [4] 029 10.10| 0.61 | 0.74 | 0.03 | 0.24 0.63 | 0.38
DEP + SRF [4] 0.32 | 0.04 | 0.23 042 | 0.16 | 0.22 0.81 | 0.31
Proposed (VGG) 0.37 | 035 | 065 | 0.62 | 0.10 @ 0.52 | 0.85 |0.50
Proposed (ResNet) 0.33 |0.51/ 0.69 | 052 | 009 | 051 | 0.85 |0.50
Weakly Supervised loU novel split

Proposed (VGG) 0.27 | 0.14 | 055 | 0.58 | 0.02 | 0.37 0.67 | 0.37
Proposed [7] (VGG) | 0.31 | 0.18 | 0.56 | 0.49 | 0.08 | 0.41 | 0.66 | 0.38
Proposed (ResNet) 025 ]021|0.62| 050 | 0.08 0.43 @ 067 | 0.40
Proposed [7] (ResNet) | 0.34 |0.34| 058 | 040 | 0.07 | 042 | 0.77 | 0.42
Image label [3] 0.04 | 0.00 | 0.09 0.16 0.01 0.02 0.32 | 0.09
Area constraints [3] 0.05 | 0.00 | 0.04 | 0.16 | 0.00 | 0.01 0.32 | 0.09
SEC [1] 0.12 { 0.03| 0.06 | 0.23 | 0.07 | 0.12 0.25 | 0.13
WTP [2] 0.11 | 0.03 | 0.18 0.11 0.00 0.02 0.23 | 0.10
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. Estimated pixelwise labels for training images

CAD120 affordance dataset (actor split) | Bck | Open | Cut | Contain | Pour | Support | Hold | Mean
Fully Supervised loU category split

Proposed (VGG) 0.81 | 067 | 0.00| 054 |042| 070 |0.64 | 0.54

Proposed (ResNet) 0.86/0.71 | 0.00 | 0.61 0.45 0.79 0.70| 0.59
Weakly Supervised loU category split

Proposed (VGG) 0.61]0.33]0.00] 035 |030 022 |043]0.32

Proposed [7] (VGG) 0.71| 0.47 | 0.0 | 036 |037| 056 | 049 | 0.42

Proposed (ResNet) 0.60 | 0.25  0.00 035 030, 0.17 |0.42]| 0.30

Proposed [7] (ResNet) 0.77/0.50 | 0.00 | 0.43 0.39 0.64 0.560.47

SEC [1] 0531043 | 0.00] 025 |[0.09| 0.02 |0.20 | 0.22

WTP [2] 0.53 013 1 0.00, 0.10 |0.08| 0.11 |0.22| 0.17

Image label [3] 055005001 0.09 |0.10| 0.02 |0.21 | 0.15

Area constraints [3] 053] 0.11 |0.02, 0.09 |009| 0.07 |0.15]|0.15

ne UMD part affordance dataset (category split) and the CAD 120 affordance dataset (actor split).

CAD120 affordance dataset (object split) | Bck | Open| Cut | Contain | Pour | Support | Hold | Mean
Fully Supervised loU object split

Proposed (VGG) 0.76 | 0.10 1 0.27 | 0.60 | 045 | 0.66 |0.60 0.49

Proposed (ResNet) 0.80|/0.22 |0.50 0.62 0.48 0.75 |0.60 0.57
Weakly Supervised loU object split

Proposed (VGG) 0.62 | 0.08  0.08| 024 022 020 |046 0.27

Proposed [7] (VGG) 0.68 | 0.10 0.23 044 036, 050 |0.47]| 0.40

Proposed (ResNet) 069 | 0.11 1 0.09, 028 021 036 |0.56 0.33

Proposed [7] (ResNet) 0.74/0.15 021 | 0.45 0.37 0.61 | 0.54 ) 0.44

SEC [1] 0.54 | 0.04 1 0.09, 0.13 | 0.09 0.08 |0.13 0.16

WTP [2] 0.57| 0.01 |0.00| 002 /009 003 |0.19] 0.13

Image label [3] 0.58 | 0.00 1 0.00 0.00 |0.00 0.00 |0.23 0.12

Area constraints [3] 0.59 | 0.03 ' 0.03, 0.01 | 0.02 0.02 |0.28]|0.14
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