

Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

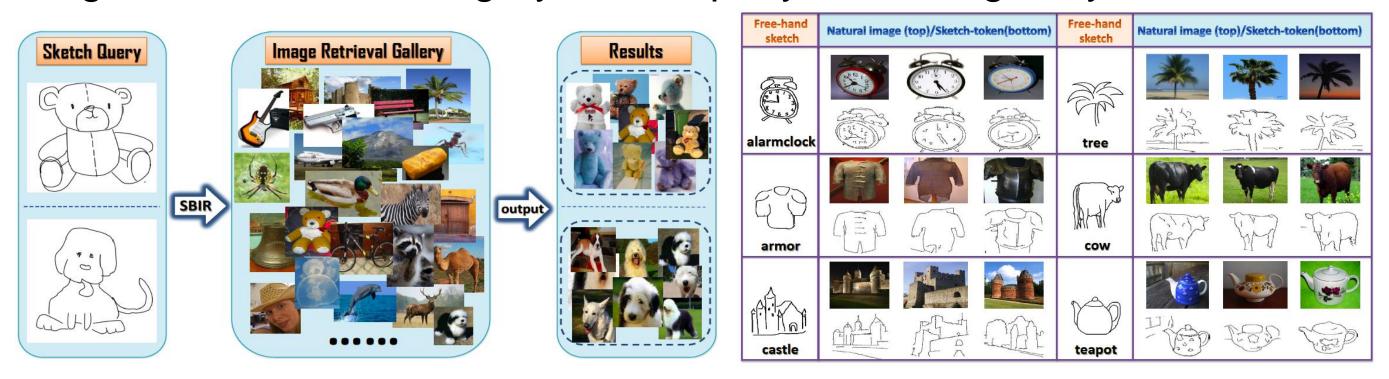
Li Liu¹, Fumin Shen², Yuming Shen¹, Xianglong Liu³, and Ling Shao¹

1. University of East Anglia, UK 2. University of Electronic Science and Technology of China, China 3. Beihang University, China

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Motivation: Sketch-Based Image Retrieval (SBIR)

Given a free-hand sketch query, we aim to retrieve relevant natural images in the same category as the query from the gallery.

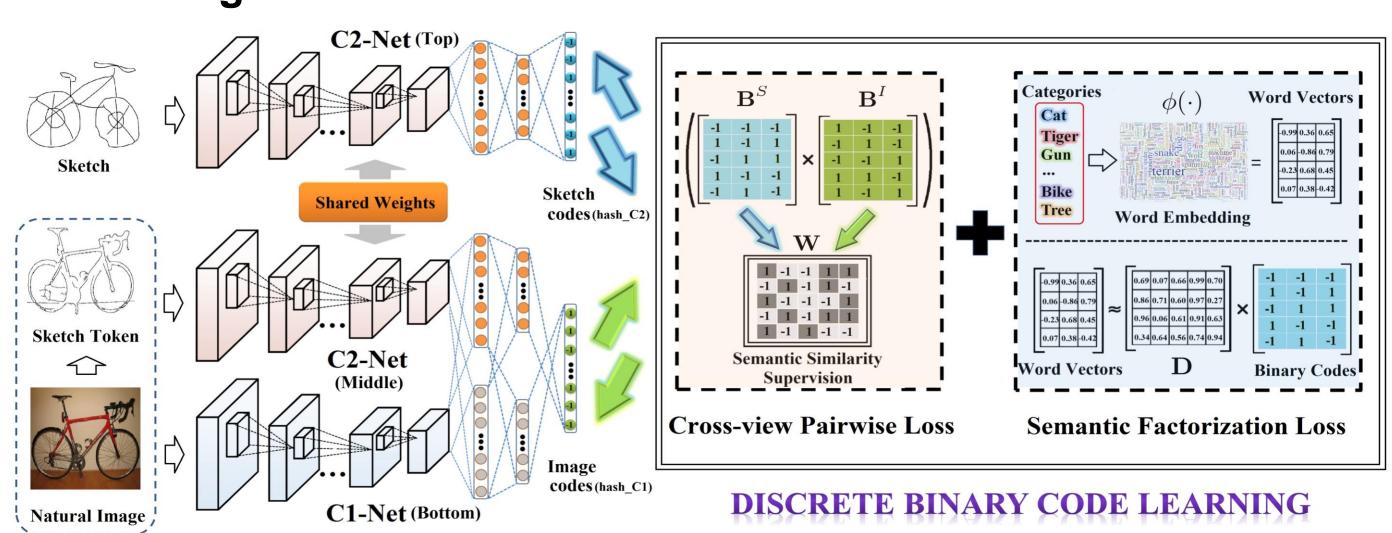


Contribution of This Work

- To the best of our knowledge, **DSH** is the first hashing work **specifically designed** for category-level SBIR.
- A novel **semi-heterogeneous deep architecture** is developed in **DSH**.
- The experiments consistently illustrate **superior performance** of **DSH** compared to the state-of-the-art methods.

Network Architecture

A convolutional neural network and discrete binary code learning are integrated into a unified end-to-end framework, optimized in an alternating manner.



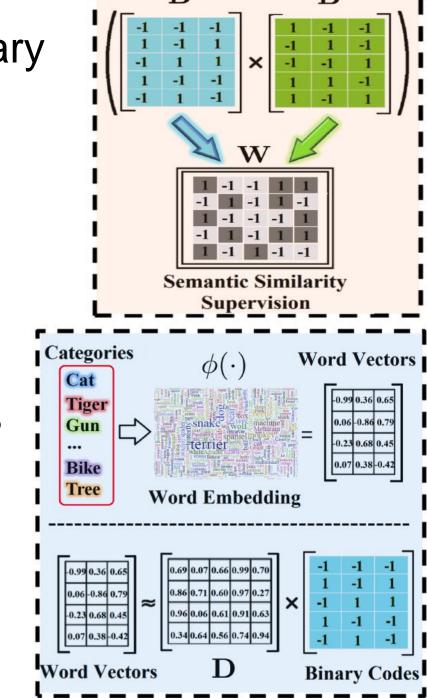
Learning Objectives

1. Cross-view pairwise loss. The produced binary codes of images and sketches need to be similar.

$$\min_{\mathbf{B}^{I}, \mathbf{B}^{S}} \mathcal{J}_{1} := ||\mathbf{W} \odot m - \mathbf{B}^{I^{\top}} \mathbf{B}^{S}||^{2},$$
s.t. $\mathbf{B}^{I} \in \{-1, +1\}^{m \times n_{1}}, \ \mathbf{B}^{S} \in \{-1, +1\}^{m \times n_{2}}$

2. Semantic factorization loss. The intra-set semantic relationships across different categories are also considered.

$$\min_{\mathbf{B}^{I}, \mathbf{B}^{S}} \mathcal{J}_{2} := ||\phi(\mathbf{Y}^{I}) - \mathbf{D}\mathbf{B}^{I}||^{2} + ||\phi(\mathbf{Y}^{S}) - \mathbf{D}\mathbf{B}^{S}||^{2},$$
s.t.
$$\mathbf{B}^{I} \in \{-1, +1\}^{m \times n_{1}}, \ \mathbf{B}^{S} \in \{-1, +1\}^{m \times n_{2}},$$



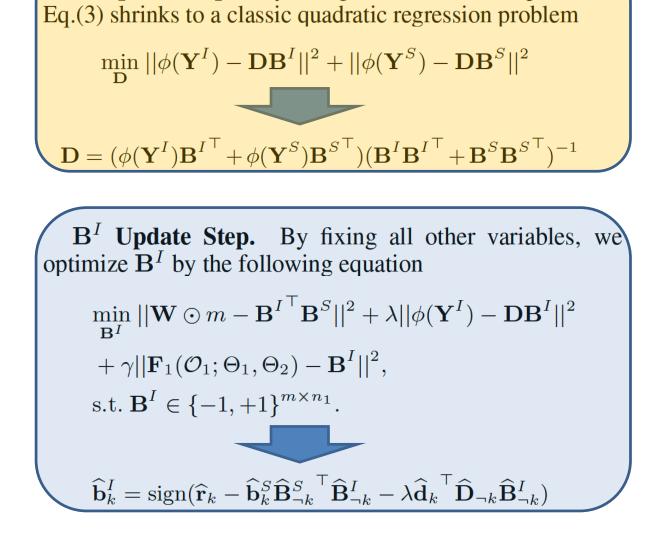
The final loss is formulated by combining the learning objectives above together, resulting in a non-convex optimization problem:

$$\min_{\mathbf{B}^{I}, \mathbf{B}^{S}, \mathbf{D}^{I}, \mathbf{D}^{S}, \Theta_{1}, \Theta_{2}} \mathcal{J} := ||\mathbf{W} \odot m - \mathbf{B}^{I^{\top}} \mathbf{B}^{S}||^{2}$$

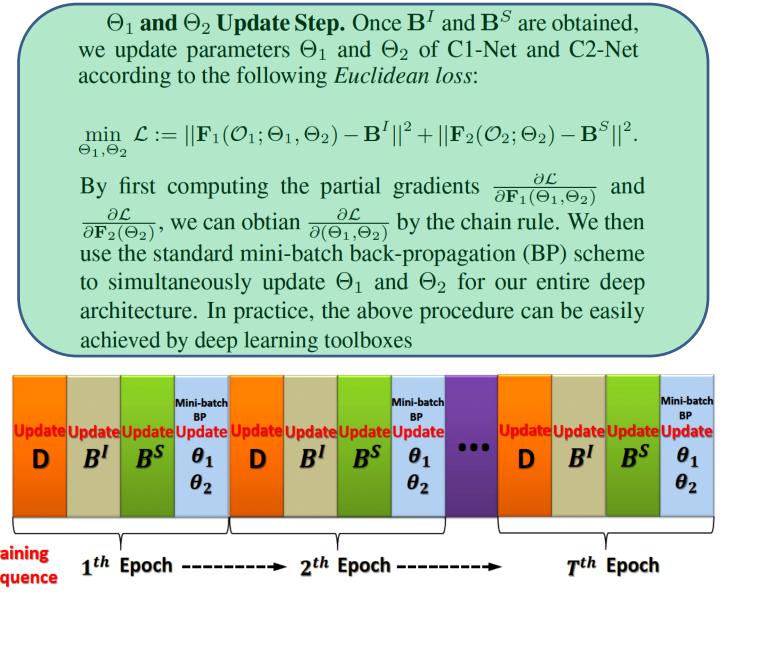
$$+ \lambda(||\phi(\mathbf{Y}^{I}) - \mathbf{D} \mathbf{B}^{I}||^{2} + ||\phi(\mathbf{Y}^{S}) - \mathbf{D} \mathbf{B}^{S}||^{2})$$

$$+ \gamma(||\mathbf{F}_{1}(\mathcal{O}_{1}; \Theta_{1}, \Theta_{2}) - \mathbf{B}^{I}||^{2} + ||\mathbf{F}_{2}(\mathcal{O}_{2}; \Theta_{2}) - \mathbf{B}^{S}||^{2})$$
s.t.
$$\mathbf{B}^{I} \in \{-1, +1\}^{m \times n_{1}}, \mathbf{B}^{S} \in \{-1, +1\}^{m \times n_{2}}.$$

Alternating Optimization



D Update Step. By fixing all variables except for D,



Experimental Results

Retrieval performances of **DSH** on the two large-scale image-sketch datasets are shown below.

Methods	Dimension			TU-Berlin Exter	nsion	Sketchy						
Methous		MAP	Precision	Retrieval time	Memory load(MB)	MAP	Precision	Retrieval time	Memory load(MB)			
		WIAT	@200	per query (s)	(204,489 gallery images)	WIAF	@200	per query (s)	(73,002 gallery images)			
HOG [8]	1296	0.091	0.120	1.43	2.02×10^{3}	0.115	0.159	0.53	7.22×10^2			
GF-HOG [18]	3500	0.119	0.148	4.13	5.46×10^{3}	0.157	0.177	1.41	1.95×10^{3}			
SHELO [49]	1296	0.123	0.155	1.44	2.02×10^{3}	0.161	0.182	0.50	7.22×10^{2}			
LKS [50]	1350	0.157	0.204	1.51	2.11×10^{3}	0.190	0.230	0.56	7.52×10^{2}			
Siamese CNN [46]	64	0.322	0.447	7.70×10^{-2}	99.8	0.481	0.612	2.76×10^{-2}	35.4			
SaN [67]	512	0.154	0.225	0.53	7.98×10^{2}	0.208	0.292	0.21	2.85×10^{2}			
GN Triplet* [52]	1024	0.187	0.301	1.02	1.60×10^{3}	0.529	0.716	0.41	5.70×10^{2}			
3D shape* [61]	64	0.054	0.072	7.53×10^{-2}	99.8 MB	0.084	0.079	2.64×10^{-2}	35.6			
Siamese-AlexNet	4096	0.367	0.476	5.35	6.39×10^{3}	0.518	0.690	1.68	2.28×10^{3}			
Triplet-AlexNet	4096	0.448	0.552	5.35	6.39×10^{3}	0.573	0.761	$1.68 \mathrm{\ s}$	2.28×10^{3}			
DSH	32 (bits)	0.358	0.486	5.57×10^{-4}	0.78	0.653	0.797	2.55×10^{-4}	0.28			
(Proposed)	64 (bits)	0.521	0.655	7.03×10^{-4}	1.56	0.711	0.858	2.82×10^{-4}	0.56			
(Froposed)	128 (bits)	0.570	0.694	1.05×10^{-3}	3.12	0.783	0.866	3.53×10^{-4}	1.11			

			TU-Berlin Extension					Sketchy						
	Method		MAP			Precision@200			MAP			Precision@200		
			32 bits	64 bits	128 bits	32 bits	64 bits	128 bits	32 bits	64 bits	128 bits	32 bits	64 bits	128 bits
		CMFH [10]	0.149	0.202	0.180	0.168	0.282	0.241	0.320	0.490	0.190	0.489	0.657	0.286
	Cross-Modality	CMSSH [2]	0.121	0.183	0.175	0.143	0.261	0.233	0.206	0.211	0.211	0.371	0.376	0.375
	Hashing Methods	SCM-Seq [68]	0.211	0.276	0.332	0.298	0.372	0.454	0.306	0.417	0.671	0.442	0.529	0.758
	•	SCM-Orth [68]	0.217	0.301	0.263	0.312	0.420	0.470	0.346	0.536	0.616	0.467	0.650	0.776
	(binary codes)	CVH [26]	0.214	0.294	0.318	0.305	0.411	0.449	0.325	0.525	0.624	0.459	0.641	0.773
		SePH [31]	0.198	0.270	0.282	0.307	0.380	0.398	0.534	0.607	0.640	0.694	0.741	0.768
		DCMH [23]	0.274	0.382	0.425	0.332	0.467	0.540	0.560	0.622	0.656	0.730	0.771	0.784
	Proposed	DSH	0.358	0.521	0.570	0.486	0.655	0.694	0.653	0.711	0.783	0.797	0.858	0.866
	Cross-View Feature	CCA [59]	0.276	0.366	0.365	0.333	0.482	0.536	0.361	0.555	0.705	0.379	0.610	0.775
		XQDA [28]	0.191	0.197	0.201	0.263	0.278	0.278	0.460	0.557	0.550	0.607	0.715	0.727
	Learning Methods (continuous-value vectors)	PLSR [63]	0.141 (4096-d)		0.215 (4096-d)		0.462 (4096-d)			0.623 (4096-d)				
	(continuous-value vectors)	CVFL [64]	0.289 (4096-d)		0.407 (4096-d)		0.675 (4096-d)			0.803 (4096-d)				

PLSR and CVFL are both based on reconstructing partial data to approximate full data, so the dimensions are fixed to 4096-d.

We also provide some empirical retrieval results. **DSH** successfully recognizes the hand-crafted sketch query and produces high-quality retrieval results.

