

Efficient Global Point Cloud Alignment Using Bayesian Nonparametrics Julian Straub^{*1}, Trevor Campbell^{*2}, Jonathan P. How², John W. Fisher III¹ • ¹CSAIL, ²LIDS, MIT

Point Cloud Alignment

Rotational Alignment

Novel Refinable Tessellation of \mathbb{S}^3

similar to the triangular tessellation of \mathbb{S}^2 starting with the projected icosahedron...

... except uses 4D tetrahedra and starts with the 600-cell

Refinement: each tetrahedron refines to 8 tetrahedra, and we select the internal edge that minimizes distortion

Bounds: solve a few small eigenvalue problems for upper, evaluate the objective anywhere in the cell for lower

Theorem: For angular precision ϵ , need N refinements:

Evaluation of S³ **Tessellation**

Apartment: rotational symmetry, outliers

Experiments

Happy Buddha: severe partial overlap

Noisy Bunny: severe noise / outliers (60%)

BB is 1-2 orders of magnitude faster with state-of-the-art performance