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• Supervised re-identification 
does not scale to large 
camera networks   
• Poor generalization 

properties to unseen 
camera conditions 

• Requires fine-tuning - 
often hundreds of image 
pairs

Train
merged datasets 

1K+ identities

Test
unseen illumination conditions

no match!

CNN

Motivation

Approach: One-Shot Metric Learning
We learn a Mahalanobis metric

d2(xi,xj) = (xi � xj)
T
M(xi � xj).

, where        is split into texture and color components M

texture pre-trained  
on intensity images 
from multiple datasets 

color metric learned  
with a single pair  
of ColorCheckers 
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Spatial Variations
• Patches at different locations have different amounts of background pixels
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Define a linear patch assignment 
problem to accommodate pose 
misalignments - solved by the 
Hungarian algorithm.
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Experimental Results
Color Calibration on CCH dataset
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• A metric split into texture and color components 
• Color invariant deep texture learned with only intensity images 
• One-shot metric learning based on patches of a ColorChecker chart 
• Spatial variations are handled by explicitly modeling background distortions
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• Features extracted on a fixed grid may not correspond due to pose changes

Learning Color Metric      G
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Covariance of negative  
pairwise differences 

Easy: random sampling  
of people patches  
from both cameras
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Learning Texture         
Merge  

all re-id datasets
Learn CNN  

through multi-classification
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• KISS ML

• One-shot ML
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