

Motivation

- Supervised re-identification does not scale to large camera networks
- Poor generalization properties to unseen camera conditions
- Requires fine-tuning often **hundreds** of image pairs

Test unseen illumination conditions

Contributions

- A metric **split into texture and color** components
- Color invariant **deep texture** learned with only intensity images
- **One-shot metric learning** based on patches of a ColorChecker chart
- Spatial variations are handled by explicitly modeling background distortions

One-Shot Metric Learning for Person Re-identification Slawomir Bak, Peter Carr Disney Research Learning Texture Learn CNN Merge Convert to through multi-classification all re-id datasets intensity images CNN low dim \rightarrow T = fc7 ID ~ 1K + JLearning Color Metric G no match! Easy: random sampling · KISS ML of people patches from both cameras $\mathbf{G} = (\Sigma)$ Covariance of **positive** Covariance of **negative** pairwise differences pairwise differences **Cross-camera-color** Background · One-shot ML distortion covariance $\mathbf{M} = \mathbf{M}$ cam **B** cam **B** cam A cam A $\Sigma^+ = \Sigma^+_{\sigma} + \Sigma^+_{\epsilon}$ U_G $\Sigma_{\sigma}^{+} = (\mathbf{c}_{i}^{\sigma} - \mathbf{c}_{j}^{\sigma})(\mathbf{c}_{i}^{\sigma} - \mathbf{c}_{j}^{\sigma})^{T}$ $\Sigma_{\epsilon}^{+} = (\mathbf{c}_{i}^{\epsilon} - \mathbf{c}_{j}^{\epsilon})(\mathbf{c}_{i}^{\epsilon} - \mathbf{c}_{j}^{\epsilon})^{T}$ **Spatial Variations** • Patches at different locations have **different amounts** of background pixels $\Sigma^+ = \Sigma^+_{\sigma} + \Sigma^+_{\epsilon}$ $\alpha^{(15)} = 0.08$ Learn using auxiliary dataset $\Sigma^{+(n)} = \Sigma_{\sigma}^{+} + \overleftarrow{\epsilon}$ $\alpha^{(1)} = 0.19$ • Features extracted on a fixed grid may not correspond due to **pose changes** ∞ Define a linear patch assignment problem to accommodate pose misalignments - solved by the ∞ Hungarian algorithm. #patches

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Sulla					
CCH dataset	γ sensitivity				
	0.5			\sim	
	\overline{O}_{04}				
-- 94.57% OUR,α=α ⁽ⁿ⁾	nra				
91.09% OUR,α=1 81.74% OUR,α=0	4.0 accuracy				
				-VIPe	B
	Rank-1				
– – 34.78% GREY					
31.30% MSRCR 30.43% LOG	-PRID				
29.35% HQ 27.39% L2	0	0.2	0.4 0.6	6 0.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	only	/	γ	0.0	only
10 12 14	text	ure	1		color
M ETHOD	#IDs	VIPeR	CUHK01	iLIDS	PRID
Dur, $\alpha = \alpha^{(n)}$	1 $ $	34.3	45.6	51.2	41.4
Dur , $\alpha = 0$	1	30.1	39.6	49.9	31.9
STL_{LOO}^{I} [CVPR16]	0	9.8	26.8	44.0	21.0
STL _{LOO} [CVPR16]	0	20.9	37.1	43.5	2.0
GL [ECCV16]	0	33.5	41.0	-	25.0
L-semi [CVPR16]	80	34.1	32.1	50.3	25.3
T-JSTL+DGD [CVPR16]	2629	38.6	66.6	64.6	64.0
LOMO+XQDA [CVPR15]	240	40.0	63.2	-	26.7
Ensembles [CVPR15]	240	45.9	53.4	50.3	17.9
Null Space [CVPR16]	240	42.2	64.9	-	29.8
Triplet Loss [CVPR16]	240	47.8	53.7	60.4	22.0
Gaussian+XQDA [CVPR16]	240	49.7	57.8	-	-