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Problem:

The goal in salient object
detection Is to identify the
most visually distinctive
objects or regions Iin an
Image and then segment
them out from the back-
ground.

FCN-Based Methods:

» lllustration of different architectures. (a) Hypercolumn [1], (b)

FCN-8s [2], (c) HED [3], (d) and (e) different patterns of our

proposed architecture.

> A series of short connections are introduced in our architecture

for combining the

advantages of both

deeper layers and _
shallower layers.
While our approach
can be extended to
a variety of different
structures, we just
list two typical ones.
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Observations:

» Following HED, we add a stack of side supervisions after each stage
to see the different behaviors brought by multi-level features.

» Deeper layers are able
to accurately locate the ¢
salient objects while
lower layers encode
rich detailed features
which are required for
refinement.

Additional Changes:

» To enhance the ability No.
of each side output,

Layer 1 2

1 convl 2 128.3 x 3 128.3 x 3
we also add another 2 conv2 2 128.3 x 3 128.3 x 3
two convolutional 3 conv3 3  256,5x5 2565 x5
layers with different 4 convd 3  256,5x5  256,5 x5
kernel sizes to each 5 convb 3 512,5 x5  512,5 x5
side output. 6 poolb 12,7 x 7  BH12,7Tx T

1 x 1
1 x 1
1ox 1
1 ox 1
1ox 1
1ox 1

The Architecture of Our DSS:

» Introducing short connect-
lions to the skip-layer
structure within the HED
architecture.

» High-level features can be
transformed to shallower
side-output layers.

» Shallower side-output can
help refine the sparse and L
irregular prediction maps
from deeper side-output
layers.
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Results and Failure Cases:

ultlpleObJect | Large Object | Complex Scene
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#“* Source code: https://mmcheng.net/dss/



https://mmcheng.net/dss/

