

Problem:

The goal in salient object detection is to identify the most visually distinctive objects or regions in an image and then segment them out from the background.

FCN-Based Methods:

- Illustration of different architectures. (a) Hypercolumn [1], (b) FCN-8s [2], (c) HED [3], (d) and (e) different patterns of our proposed architecture.
- > A series of short connections are introduced in our architecture

for combining the advantages of both deeper layers and shallower layers. While our approach can be extended to a variety of different structures, we just list two typical ones.

Deeply Supervised Salient Object Detection with Short Connections Qibin Hou¹, Ming-Ming Cheng¹, Xiaowei Hu¹, Ali Borji², Zhuowen Tu³, Philip H. S. Torr⁴ ¹Nankai University, ²UCF, ³UCSD, ⁴Oxford University

Observations:

- Following HED, we add a stack of side supervisions after each stage to see the different behaviors brought by multi-level features.
- Deeper layers are able second to accurately locate the salient objects while lower layers encode rich detailed features refinement.

The Architecture of Our DSS:

- Introducing short connectthe skip-layer ions to structure within the HED architecture.
- > High-level features can be transformed to shallower side-output layers.
- Shallower side-output can help refine the sparse and irregular prediction maps side-output deeper from layers.

Additional Changes:

 \succ To enhance the ability No. of each side output, we also add another convolutional two layers with different kernel sizes to each side output.

Results and Failure Cases:

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Layer	1	2	3
conv1_2	$128, 3 \times 3$	$128, 3 \times 3$	$1, 1 \times 1$
conv2_2	$128, 3 \times 3$	$128, 3 \times 3$	$1, 1 \times 1$
conv3_3	$256, 5 \times 5$	$256, 5 \times 5$	$1, 1 \times 1$
conv4_3	$256, 5 \times 5$	$256, 5 \times 5$	$1, 1 \times 1$
conv5_3	$512, 5 \times 5$	$512, 5 \times 5$	$1, 1 \times 1$
pool5	$512, 7 \times 7$	$512, 7 \times 7$	$1, 1 \times 1$

Source code: <u>https://mmcheng.net/dss/</u>