

Captioning

White and red

Yes, they are

No, something is there can't tell what it is

Yes, magazines, books, toaster and basket, and a plate

Two people are in a wheelchair and

How many people on wheelchairs? Two

Visual Dialog

one is holding a racket

Visual Question Answering

How many wheelchairs? One

Visual Dialog

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F. Moura, Devi Parikh, Dhruv Batra

arxiv.org/abs/1611.08669 visualdialog.org

Goal

Visual Dialog

Q1: How many people on wheelchairs?

A1: Two

Q2: What are their genders?

A2: One male and one female

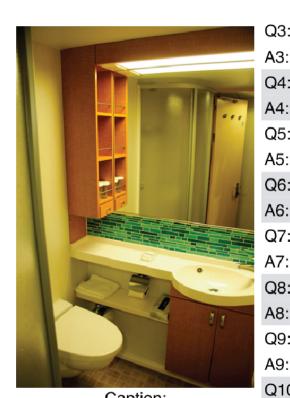
Q3: Which one is holding a racket?

A4: The woman

Task: Given image, dialog history, follow-up question — predict free-form answer

Build an agent capable of holding a meaningful dialog with humans in conversational language about visual content

VisDial Data Collection



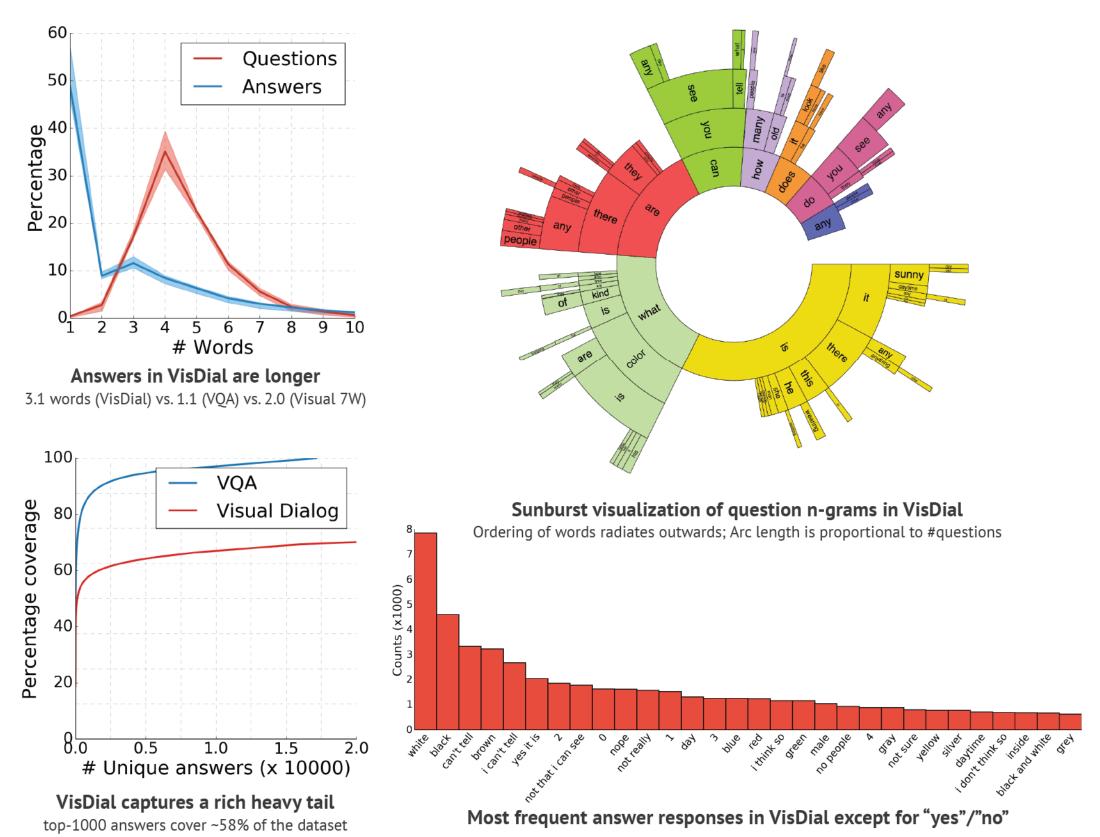
Q3: can you see anything else? A3: there is a shelf with items on it Q4: is anyone in the room? A4: nobody is in the room Q5: can you see on the outside? A5: no, it is only inside Q6: what color is the sink? A6: the sink is white Q7: is the room clean? A7: it is very clean Q8: is the toilet facing the sink? yes the toilet is facing the sink Q9: can you see a door? A9: yes, I can see the door A sink and toilet in a small room. A10 the door is tan colored

there any pictures on

the mug and cat on a table

here other items on the tab

VisDial Dataset & Evaluation



Evaluation: Given image, dialog history, question, 100 candidate answers evaluate model on retrieval of ground-truth human response **Metrics**: mean reciprocal rank, recall@k, mean rank

>140k dialogs on COCO images; >1.4M dialog question-answers Evaluation by retrieval of ground truth human response

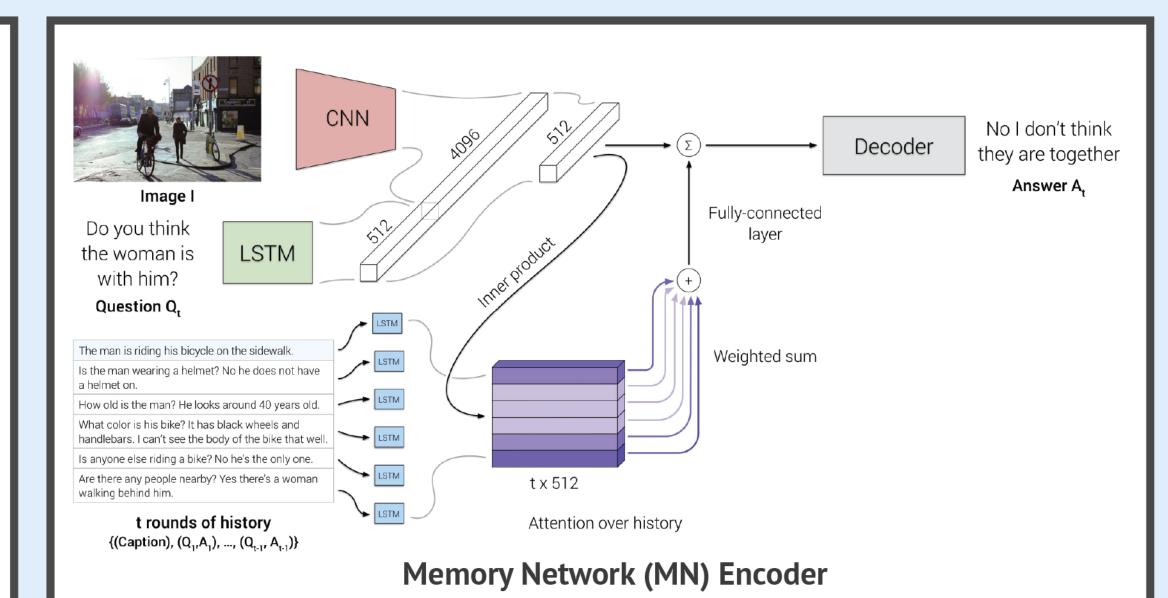
Encoder-Decoder Models

Late Fusion (LF) Encoder: Naive embedding of image, history, question Hierarchical Recurrent Encoder (HRE): Dialog-level recurrent block on top of OA-level recurrent block

Memory Network (MN) Encoder (Similar to Weston et al., 2014): Builds context vector from previous QA facts in memory

Generative (G) Decoder: RNN initialized with input encoding, predicts response word-by-word; Trained to maximize LL of ground truth response

Discriminative (D) Decoder: Dot product between input encoding and RNN encoding of 100 candidate answers + 100-way softmax

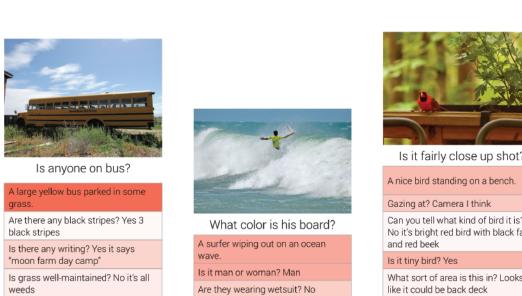


	Model	MRR	R@1	R@5	R@10	Mean
Baseline	Answer prior	0.311	19.85	39.14	44.28	31.56
	NN-Q	0.392	30.54	46.99	49.98	30.88
	NN-QI	0.385	29.71	46.57	49.86	30.90
Generative	LF-Q-G	0.403	29.74	50.10	56.32	24.06
	LF-QH-G	0.425	32.49	51.56	57.80	23.11
	LF-QI-G	0.437	34.06	52.50	58.89	22.31
	LF-QIH-G	0.430	33.27	51.96	58.09	23.04
	HRE-QH-G	0.430	32.84	52.36	58.64	22.59
	HRE-QIH-G	0.442	34.37	53.40	59.74	21.75
	HREA-QIH-G	0.442	34.47	53.43	59.73	21.83
	\overline{MN} - \overline{QH} - \overline{G}	0.434	33.12	53.14	59.61	22.14
	MN-QIH-G	0.443	34.62	53.74	60.18	21.69
Discriminative	LF-Q-D	0.482	34.29	63.42	74.31	8.87
	LF-QH-D	0.505	36.21	66.56	77.31	7.89
	LF-QI-D	0.502	35.76	66.59	77.61	7.72
	LF-QIH-D	0.511	36.72	67.46	78.30	7.63
	HRE-QH-D	0.489	34.74	64.25	75.40	8.32
	HRE-QIH-D	0.502	36.26	65.67	77.05	7.79
	HREA-QIH-D	0.508	36.76	66.54	77.75	7.59
	\overline{MN} - \overline{QH} - \overline{D}	0.524	36.84	67.78	78.92	7.25
	MN-QIH-D	0.529	37.33	68.47	79.54	7.03
VQA	SAN1-QI-D	0.506	36.21	67.08	78.16	7.74
	HieCoAtt-QI-D	0.509	35.54	66.79	77.94	7.68

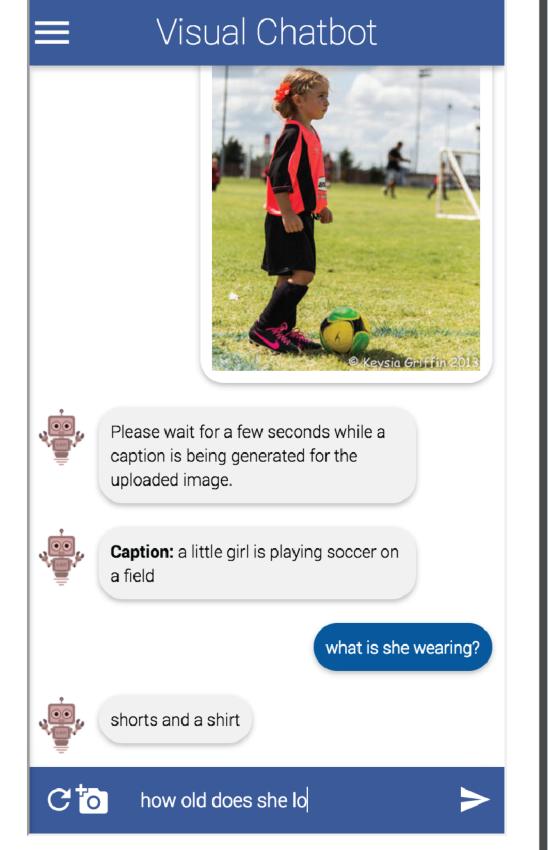
Real-time visual chatbot hosted on CloudCV

Discriminative models work better than generative models MN works best in both generative and

discriminative settings Human performance, topic transition studies, dialog perplexities, etc. in paper



Selected examples of attention from our Memory Network Intensity of color indicates strength of attention placed on that fact



Two-person real-time chat on Amazon Mechanical Turk