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DEep Stochastic IOC RNN Encoder-decoder 
• DESIRE is a framework for future prediction, which predicts 

probable outcomes for agents in the scene in terms of 
trajectories given a series of past events. 

Motivation (scenario + why it’s hard) 

Workflow (+ comparision) 

    Conventional     DESIRE (proposed) 

DESIRE Characteristics 
• Scalability: The use of deep learning allows for end-to-end 

training and easy incorporation of multiple cues. 
• Diversity: CVAE is combined with RNN encodings to generate 

stochastic prediction hypotheses to hallucinate multi-
modalities. 

• Accuracy: The IOC-based framework accumulates long-term 
future rewards and the refinement module learns to estimate 
a deformation of the trajectory, enabling more accurate 
predictions.

Architecture 

Diverse Sample Generation with CVAE                          Scene Context Fusion 

IOC-based Ranking and Refinement 
• RNN model assigns rewards to each prediction hypothesis and measures their goodness based on the accumulated 

long-term rewards. (cross-entropy loss                 , where                             ,                                      ) 
• At the same time, prediction hypotheses get refined by learning displacements ∆Y to the actual prediction Y.  

(regression loss                                      ) 
• Module receives iterative feedbacks from regressed predictions and keeps adjusting so that it produces precise 

predictions at the end.  

Experiments 
 Iterative refinement 

 Prediction results  (10% acc. for CVAE and DESIRE) 
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• Reason from past motion 
history, scene context and 
interactions among agents.

• Account for the multi-modality 
nature of the future prediction.

• Foresee potential future 
outcomes for a strategic 
prediction.

• Need time-profile prediction to 
account for agents’ influence.

• CVAE introduces stochastic latent variable z that are learned to encode a 
diverse set of predictions Y given input X, making it suitable for modeling 
one-to-many mapping. 

• During training, Q is learned such that it gives higher probability to z that 
is likely to produce a reconstruction Y close to actual prediction given the 
full context X and Y. 
(loss terms:                               ,                                     ) 

• At test time, z is sampled randomly from the prior distribution and 
decoded through the decoder network to produce a prediction hypothesis.
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DESIRE-SI Top1
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Linear
RNN ED
RNN ED-SI

X
Y

KITTI  
(error in meters / miss-rate with 1m threshold)

SDD  
(pixel error at 1/5 resolution)

Method 1s 2s 3s 4s 1s 2s 3s 4s
Linear 0.89 / 0.31 2.07 / 0.49 3.67 / 0.59 5.62 / 0.64 2.58 5.37 8.74 12.54

RNN ED-SI 0.56 / 0.16 1.40 / 0.44 2.65 / 0.58 4.29 / 0.65 1.51 3.56 6.04 8.80
CVAE 0.35 / 0.06 0.93 / 0.30 1.81 / 0.49 3.07 / 0.59 1.84 3.93 6.47 9.65

DESIRE-S-IT0 0.32 / 0.05 0.84 / 0.26 1.67 / 0.43 2.82 / 0.54 1.59 3.31 5.27 7.75
DESIRE-SI-IT4 0.28 / 0.04 0.67 / 0.17 1.22 / 0.29 2.06 / 0.41 1.29 2.35 3.47 5.33
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