

Learning Motion Patterns in Videos

Karteek Alahari Pavel Tokmakov

Cordelia Schmid

Code available: http://thoth.inrialpes.fr/research/mpnet

Motion segmentation

The problem of segmenting independently moving objects in videos.

Challenges

State-of-the-art approaches

Clustering dense point trajectories [Brox and Malik, ECCV'10], [Keuper et al., ICCV'15]

Heuristic optical flow-based methods [Papazoglou and Ferrari, ICCV'13], [Faktor and Irani, BMVC'14]

Neither of them uses learning to detect motion patterns

- We propose a model (MP-Net) for learning to segment independent motion
- Apply post-processing to handle the remaining challenges

Our approach: MP-Net

- CNN with an encoder (a) and a decoder (b) parts
- Takes optical flow as input and outputs an estimate of motion segmentation
- Learns to capture patterns that correspond to independent motion

Training data

- No dataset of real videos with dense pixel-level annotations is available
- We utilize synthetic data FT3D [Mayer et al., CVPR'16]
- FT3D provides ground truth flow, camera pose and instance segmentation
- We compute moving object labels from this data

Estimated ground truth

Detecting motion patterns in real videos

- Post-processing to handle stuff in motion and flow inaccuracies
- Extract object proposals with SharpMask [Pinheiro et al., ECCV'16]
- Aggregate them into an objectness map to suppress motion of stuff

prediction

• Dense CRF [Krähenbühl et al., NIPS'11] for boundary refinement

map

Final result (with CRF)

Ablation studies

Experiments on FT3D, DAVIS and BMS-16

# dec.	Trained on FT3D with	FT3D	DAVIS	Variant	of our method	Flow used	Mean IoU	
1	RGB single frame	68.1	12.7	MP-Net MP-Net MP-Net + Objectness MP-Net + Objectness MP-Net + Objectness + CRF		LDOF	52.4	
	RGB pair	69.1	16.6			EpicFlow	56.9	
	GT flow	74.5	44.3			LDOF	63.3	
	GT angle field	73.1	46.6			EpicFlow	64.5	
	RGB + GT angle field	74.8	39.6			LDOF	69.7	
	LDOF angle field	63.2	38.1	MP-Net	t + Objectness + CRF	EpicFlow	68.0	
4	GT angle field	85.9	52.4		Results on DAVIS			

Mean IoU on FT3D and DAVIS

- Flow is necessary for domain transfer
- Flow quality is important during training
- Better flow in test helps MP-Net Post-processing is essential for top results
- It also cancels out the flow difference

Comparison to the state-of-the-art

	Measure	[Faktor'14]	[Taylor'15]	[Brox'10]	[Lee'11]	[Papazoglou'13]	Ours
- -	IoU	64.1	51.4	54.3	56.9	57.5	69.7
	Boundary acc.	59.3	49.0	52.5	50.3	53.6	66.3
	Temp. stab.	35.6	24.3	25.0	19.0	27.6	68.6

Results on DAVIS (see paper for full table)

Our frame-level method outperforms video-level approaches on DAVIS

Extension with visual memory (arxiv:1704.05737)

- An appearance stream to encode semantic information
- A visual memory module (ConvGRU) to segment objects after they stop

