Learning to Align Semantic Segmentation and 2.5D Maps for Geolocalization Anil Armagan, Martin Hirzer, Peter M. Roth, Vincent Lepetit Institute of Computer Graphics and Vision, Graz University of Technology {armagan, hirzer, roth, lepetit}@icg.tugraz.at

Contribution

efficient method for We present an geolocalization in urban environments estimate starting from coarse pose а GPS provided compass and bv information simple and using а untextured 3D model of the surrounding buildings. We train two deep networks to predict the best direction to improve the estimate, given a semantic pose segmentation of the input image and a rendering of the buildings from this estimate. We then iteratively apply these networks until converging to a good pose.

2.5D Maps

- Light weight 3D models
- Ground plane locations of buildings' corners
- Height of each building
- No texture or color
- Available on OpenStreetMap

Relation Between Input Image and 2.5D Map • How to construct the relation between the image and the model?

Input image

2.5D map

• We use **FCN** [1] to semantically segment the input image into related classes: façade, vertical edge, horizontal edge and background.

Reprojection of the model under an accurate pose

Learning to Predict a Direction for Pose Update

- Translation network: 8 directions or "don't move"
- Orientation network: 2 directions or "don't rotate"
- Example of a pose update by the Translation network:

• The networks predict only a direction for a pose update. The magnitude of the update is found by a **line search** algorithm: We perform a line search along the predicted direction, and keep the pose with the maximum likelihood score \mathcal{L} (see below).

"don't rotate" at the same time.

Results

References

[1] Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Acknowledgment

This work was funded by the Christian Doppler Laboratory for Semantic 3D **Computer Vision.**

• Both networks are iterated until their predictions are "don't move" and

• We tested our approach on 40 test images and evaluated the position and orientation errors of \tilde{p} and the pose found by our method w.r.t. the ground truth pose. Our method decreases the mean orientation error of \widetilde{p} from 11.3° to 3.2° and the mean position error from 13.4*m* to 3.1*m*.