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Motivation: 
The pixel-wise annotation of images to obtain accurate semantic 
segmentation ground-truth is both expensive and time-consuming. By 
exploiting the vast collection of labeled web images with rich context, 
we can bypass this tedious task. Our webly supervised semantic 
segmentation outperforms the state-of-the-art weakly supervised 
segmentation methods by a significant margin.!

Methods: 
Images in {W} are first segmented with a saliency algorithm[1] combined with dense CRF[2]. 

Method& CCCN[3]& DCSM[4]& BFBP[5]& STC[6]& SEC[7]& OURS&
Valida2on&set! 35.3! 44.1! 46.6! 49.8! 50.7! 53.4!

Test&set! 35.6! 45.1! 48.0! 51.2! 51.7! 55.3!

Web images: 
From these websites, we collect three sets of web images as training data: 
 
 
 
 
 
 
 
 
—{W}: a white background set, built by querying the text-based image search 
engine, e.g., Google or Microsoft Bing, with the query “<class> on white 
background”.  
—{C}: a common background set, built by retrieving images from image sharing 
websites, e.g., Flickr or Imgur1, with common background keywords. 
—{R}: a realistic images set, constructed by crawling image sharing websites with 
the given class name or using existing datasets. 
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We then train a semantic segmentation network in a three-stage pipeline: 
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—Stage 1: we train a Shallow Neural Network (SNN) for each class to output class-specific 
segmentation masks, using the hypercolumn features from a pre-trained network. 
—Stage 2: we iteratively refine the SNNs based on the realistic images in {R}. A Conditional 
Random Field (CRF) is applied during each iteration. 
—Stage 3: we assemble all SNNs into one deep convolution neural network (DCNN) by 
training the DCNN end-to-end with the segmentation masks generated by the SNNs. 
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Paper and code available at:  

Results: 
Dataset: For training, we collect 6807 white background images for {W}, 
1491 images for {C} and 10,582 images for {R}. We evaluate the 
performance on the PASCAL VOC 2012 segmentation benchmark with the 
Intersection over Union (IoU) metric.!

IoU: Our method produces excellent results on both the validation and test 
set, outperforming all state-of-the-art weakly-supervised semantic 
segmentation methods.  
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